•  
  •  
 

Coal Geology & Exploration

Abstract

Efficiently controlling the water inflow (loss) of burnt rocks in the roof of coal mining faces requires grouting reinforcement materials with excellent compressive toughness. Silicate cement-based grouting materials, characterized by low costs, have been extensively applied to grouting reinforcement in coal mines. However, their hardened grout is susceptible to deformation, exhibiting poor toughness. By employing the in-situ polymerization of acrylamide (AM) for toughening, this study investigated the effects of AM, cross-linking agent, initiator, and water-cement ratio on the setting time, swelling capacity, compressive strength, and toughness index of the fly ash-based grouting materials. Furthermore, the microstructures of the hardened grout were observed using a scanning electron microscope (SEM). Key findings are as follows: (1) AM can polymerize in-situ in the fly ash grout to form polyacrylamide (PAM) gel. (2) With AM content of 25%, cross-linking agent content of 0.75%, initiator content of 2.25%, and the water-cement ratio of 0.575, the fly ash-based grouting material exhibits a compressive deformation rate of above 60%, a swelling ratio of 113.43, and a toughness index of 257.92%. (3) Observations of SEM images reveal that the hardened grout of the grouting material forms an inorganic-organic mosaic network structure, with fly ash particles and PAM gel constituting its rigid framework and flexible network, respectively. The deformation rates derived from the compressive stress-strain curves of the hardened grout generally exceed 40%, suggesting significant plastic deformation characteristics. (4) Engineering experimental results show a maximum flexural toughness deformation rate of up to 25.86%. Overall, the grouting material developed in this study, with excellent toughness and fluidity, as well as favorable swelling properties in water, can be applied to water seepage and leakage control for coal mine roofs.

Keywords

grouting material, burnt rock, roof control, fly ash, acrylamide (AM), toughness, optimization

DOI

10.12363/issn.1001-1986.23.09.0526

Reference

[1] 范立民,孙强,马立强,等. 论保水采煤技术体系[J]. 煤田地质与勘探,2023,51(1):196−204.

FAN Limin,SUN Qiang,MA Liqiang,et al. Technological system of water–conserving coal mining[J]. Coal Geology & Exploration,2023,51(1):196−204.

[2] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.

DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.

[3] 李金龙,张允强,徐新启,等. 高家堡煤矿煤层顶板注浆加固堵水技术探讨[J]. 煤田地质与勘探,2019,47(增刊1):20−25.

LI Jinlong,ZHANG Yunqiang,XU Xinqi,et al. Reinforcement and water plugging technology of roof grouting in Gaojiabao Coal Mine[J]. Coal Geology & Exploration,2019,47(Sup.1):20−25.

[4] 时志强,王美玲,陈彬. 中国北方烧变岩的分布、特征及研究意义[J]. 古地理学报,2021,23(6):1067−1081.

SHI Zhiqiang,WANG Meiling,CHEN Bin. Distribution,characteristics and significances of burnt rocks in northern China[J]. Journal of Palaeogeography (Chinese Edition),2021,23(6):1067−1081.

[5] 范立民. 生态脆弱区烧变岩研究现状及方向[J]. 西北地质,2010,43(3):57−65.

FAN Limin. Research status and research directions of burnt rocks in vulnerable ecological region[J]. Northwestern Geology,2010,43(3):57−65.

[6] 赵春虎,王皓,靳德武. 煤层开采覆岩预裂–注浆改性失水控制方法探讨[J]. 煤田地质与勘探,2021,49(2):159−167.

ZHAO Chunhu,WANG Hao,JIN Dewu. Discussion on roof water loss control method of coal seam based on pre–splitting grouting reformation (P–G)[J]. Coal Geology & Exploration,2021,49(2):159−167.

[7] 姬中奎,薛小渊,杨志斌,等. 神府煤田张家峁煤矿烧变岩与水库水力联系研究[J]. 中国煤炭地质,2019,31(4):57−61.

JI Zhongkui,XUE Xiaoyuan,YANG Zhibin,et al. Study on hydraulic connection between burnt rock and reservoir in Zhangjiamao Coalmine,Shenfu Coalfield[J]. Coal Geology of China,2019,31(4):57−61.

[8] 范立民,蒋泽泉. 烧变岩地下水的形成及保水采煤新思路[J]. 煤炭工程,2006(4):40−41.

FAN Limin,JIANG Zequan. Formation of groundwater in burnt metamorphic rocks and new ideas for water conservation and coal mining[J]. Coal Engineering,2006(4):40−41.

[9] 范立民,贺卫中,彭捷,等. 高强度煤炭开采对烧变岩泉的影响[J]. 煤炭科学技术,2017,45(7):127−131.

FAN Limin,HE Weizhong,PENG Jie,et al. Influence of high–intensity coal mining on burned rock spring[J]. Coal Science and Technology,2017,45(7):127−131.

[10] 侯恩科,杨斯亮,文强,等. 柠条塔井田南翼隐伏火烧区特征及富水性评价[J]. 煤矿安全,2022,53(11):191–199.

HOU Enke,YANG Siliang,WEN Qiang,et al. Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine[J]. Safety in Coal Mines,2022,53(11):191–199.

[11] 王碧清,姬中奎,郑永飞,等. 火烧区完整烧变岩断面的帷幕注浆技术[J]. 煤炭技术,2019,38(4):99−102.

WANG Biqing,JI Zhongkui,ZHENG Yongfei,et al. Curtain grouting technology for complete burnt rock section in burnt rock area[J]. Coal Technology,2019,38(4):99−102.

[12] 苗彦平,姬中奎,李军,等. 待采工作面上覆烧变岩注浆帷幕建造技术[J]. 煤矿安全,2019,50(7):108−111.

MIAO Yanping,JI Zhongkui,LI Jun,et al. Construction technology of grouting curtain for overburden burnt rock in waiting mining face[J]. Safety in Coal Mines,2019,50(7):108−111.

[13] 李伟. 巨厚富水烧变岩露天边坡隔水煤(岩)柱构造技术研究[J]. 煤炭工程,2022,54(5):137−141.

LI Wei. Water–resisting pillar structure of extra–thick water–rich burnt rock open–pit slope[J]. Coal Engineering,2022,54(5):137−141.

[14] 刘鹏. 煤火区烧变岩火山灰活性及浆液流变性能研究[D]. 徐州:中国矿业大学,2021.

LIU Peng. Study on the pozzolanic activity and rheological properties of the burnt rocks fluid in coal fire fields[D]. Xuzhou:China University of Mining and Technology,2021.

[15] 范立民,马雄德,吴群英,等. 保水采煤技术规范的技术要点分析[J]. 煤炭科学技术,2020,48(9):81−87.

FAN Limin,MA Xiongde,WU Qunying,et al. Analysis on technical points of water–preserving coal mining technical specifications[J]. Coal Science and Technology,2020,48(9):81−87.

[16] 张海波,狄红丰,刘庆波,等. 微纳米无机注浆材料研发与应用[J]. 煤炭学报,2020,45(3):949−955.

ZHANG Haibo,DI Hongfeng,LIU Qingbo,et al. Research and application of micro–nano inorganic grouting materials[J]. Journal of China Coal Society,2020,45(3):949−955.

[17] 王江峰,张海波,管学茂. 超细水泥注浆材料煤壁注浆加固试验研究[J]. 河南理工大学学报(自然科学版),2011,30(2):145−148.

WANG Jiangfeng,ZHANG Haibo,GUAN Xuemao. The study on micro–fine cement grouting material applying in colrl reinforcement[J]. Journal of Henan Polytechnic University (Natural Science),2011,30(2):145−148.

[18] 郭玉,张碧亮,郑西贵,等. 基于浆液流变参数时变性的超细水泥风氧化带注浆加固技术[J]. 采矿与安全工程学报,2019,36(2):338−343.

GUO Yu,ZHANG Biliang,ZHENG Xigui,et al. Grouting reinforcement technology of superfine cement with wind oxidation zone based on time–varying rheological parameters of slurries[J]. Journal of Mining & Safety Engineering,2019,36(2):338−343.

[19] 管学茂,张海波,杨政鹏,等. 高性能无机–有机复合注浆材料研究[J]. 煤炭学报,2020,45(3):902−910.

GUAN Xuemao,ZHANG Haibo,YANG Zhengpeng,et al. Research of high performance inorganic–organic composite grouting materials[J]. Journal of China Coal Society,2020,45(3):902−910.

[20] 管学茂,李雪峰,张海波,等. 深井软岩无机有机复合注浆加固材料研发与应用[J]. 煤炭科学技术,2023,51(8):1−11.

GUAN Xuemao,LI Xuefeng,ZHANG Haibo,et al. Research and application of inorganic and organic composite grouting reinforcement materials in deep weak rock[J]. Coal Science and Technology,2023,51(8):1−11.

[21] 徐鹏,张轩翰,明高林,等. 纳米改性水泥基材料功能化研究进展[J]. 材料导报,2023,37(16):21080265.

XU Peng,ZHANG Xuanhan,MING Gaolin,et al. Research progress on functionalized nano–modified cement–based materials[J]. Materials Reports,2023,37(16):21080265.

[22] ZHANG Haibo,ZHOU Rong,LIU Songhui,et al. Enhanced toughness of ultra–fine sulphoaluminate cement–based hybrid grouting materials by incorporating in–situ polymerization of acrylamide[J]. Construction and Building Materials,2021,292(6):123421.

[23] LIANG Rui,LIU Qing,HOU Dongshuai,et al. Flexural strength enhancement of cement paste through monomer incorporation and in situ bond formation[J]. Cement and Concrete Research,2022,152:106675.

[24] 杨政鹏,孙钰坤,管学茂,等. 新型加固煤体硅酸盐基无机/有机复合注浆材料的制备及性能[J]. 材料导报,2013,27(4):120−123.

YANG Zhengpeng,SUN Yukun,GUAN Xuemao,et al. Preparation and properties of novel silicate–based inorganic/organic composite grouting material to reinforce coal[J]. Materials Reports,2013,27(4):120−123.

[25] 姜璐莎,李超越,卢光华,等. 聚合物改性膨润土在阻隔屏障中酸碱盐条件下的防渗效果[J]. 太原理工大学学报,2023,54(6):959−968.

JIANG Lusha,LI Chaoyue,LU Guanghua,et al. Hydraulic performance of polymer modified bentonite in containment barriers under aggressive conditions[J]. Journal of Taiyuan University of Technology,2023,54(6):959−968.

[26] LIU Qing,LIU Wenjie,LI Zongjin,et al. Ultra–lightweight cement composites with excellent flexural strength,thermal insulation and water resistance achieved by establishing interpenetrating network[J]. Construction and Building Materials,2020,250:118923.

[27] CHEN Binmeng,QIAO Gang,HOU Dongshuai,et al. Cement–based material modified by in–situ polymerization:From experiments to molecular dynamics investigation[J]. Composites Part B:Engineering,2020,194:108036.

[28] 周蓉,王继茹,张海波. 聚合物改性水泥基材料研究进展[J]. 化工新型材料,2021,49(12):275−279.

ZHOU Rong,WANG Jiru,ZHANG Haibo. Research development on polymer modified cement based material[J]. New Chemical Materials,2021,49(12):275−279.

[29] 周蓉. 丙烯酰胺原位聚合改性硫铝酸盐注浆材料研究与应用[D]. 焦作:河南理工大学,2021.

ZHOU Rong. Research and application of acrylamide in situ polymerization modified sulfoaluminate grouting[D]. Jiaozuo:Henan Polytechnic University,2021.

[30] 耿耀强,徐文全,黄耀光,等. 矿用新型复合注浆材料的力学特性及破坏特征[J]. 西安科技大学学报,2022,42(5):884−893.

GENG. Yaoqiang,XU Wenquan,HUANG Yaoguang,et al. Mechanical properties and failure characteristics of new composite grouting material for mining[J]. Journal of Xi’an University of Science and Technology,2022,42(5):884−893.

[31] WANG Chunyu,BU Yuhuan,GUO Shenglai,et al. Self–healing cement composite:Amine– and ammonium–based pH–sensitive superabsorbent polymers[J]. Cement and Concrete Composites,2019,96:154−162.

[32] MIGNON A,GRAULUS G J,SNOECK D,et al. pH–sensitive superabsorbent polymers:A potential candidate material for self–healing concrete[J]. Journal of Materials Science,2015,50(2):970−979.

[33] 赵刚,程健维,龚选平,等. 新型无机缓凝封孔浆液注浆扩散形态研究[J]. 西安科技大学学报,2021,41(3):425−433.

ZHAO. Gang,CHENG Jianwei,GONG Xuanping,et al. Study on grouting diffusion morphology of new inorganic retarding sealing materials[J]. Journal of Xi’an University of Science and Technology,2021,41(3):425−433.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.