•  
  •  
 

Coal Geology & Exploration

Authors

XIONG Xianyue, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, ChinaFollow
ZHEN Huaibin, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
LI Shuguang, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
WANG Hongna, CNPC Exploration Software Co., Ltd., Beijing 100080, China
ZHANG Lei, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
SONG Wei, PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
LIN Hai, PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
XU Fengyin, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; Chinese Petroleum Society, Beijing 100724, ChinaFollow
LI Zhongbai, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
ZHU Weiping, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
WANG Chengwang, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
CHEN Gaojie, National Engineering Research Center of China United Coalbed Methane Corp., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China

Abstract

The Daning-Jixian block on the eastern margin of the Ordos Basin exhibits high-abundance deep coalbed methane (CBM) resources, well-developed natural fractures of coal reservoirs, well-developed cleats and fractures in coals themselves, coals with excellent structures and high mechanical strength, and strong sealing ability of coal roofs and floors. All these create favorable conditions for the formation of a large-scale fracture network through volume fracturing. The ultra-large-scale fracturing process has contributed to a major breakthrough in the single-well output of deep CBM. However, the tracer monitoring results show that various fracturing stages of horizontal wells exhibited different contribution rates to gas production, there exhibited blind zones of resource production, and expected comprehensive benefits were not achieved. This study proposed two major challenges posed to the formation of ultra-large-scale effective fracture networks in deep coal reservoirs: (1) unclear understanding of fracture propagation patterns in deep coal seams and (2) the presence of areas subjected to over and insufficient stimulation using current fracturing technologies. Given these challenges, this study developed a multi-round diverting fracturing technology to form a merged fracture network for the stimulation of deep coal reservoirs. This technology involved: (1) analyzing the feasibility of the formation of a super-large fracture network of deep coal seams. (2) determining the effects of microstructures, such as the curvatures and dip angles of strata, on fracture propagation based on the field fracturing data and microseismic monitoring results. (3) Establishing a stress field calculation method, which laid the foundation for the process optimization and field experiments of multi-round fracturing diverting. This technology was verified through field experiments in the Daning-Jixian block. The results revealed the uniform propagation of hydraulic fractures in areas with nonuniform micro-stress fields around wells. This uniform propagation increased the overall fractured volume, with single-well gas production in the experiment area significantly improving compared to surrounding wells. Well DJ55, experiencing five rounds of fracturing, exhibited a stimulated reservoir volume of up to 243.6×104 m3, 340-day cumulative gas production of 970.5×104 m3, and an average daily gas production of 2.85×104 m3, with daily gas production and pressure remaining stable. These results indicate excellent stimulation results. With an estimated ultimate recovery greater than 3000×104 m3, this well had great potential for gas production. Well JS8-6P05 in the block yielded a daily gas production of 8.59×104 m3 after 2‒3 rounds of fracturing at fracturing stages 1‒7. Compared to well JS8-6P04, which employed single-round fracturing at each fracturing stage, well JS8-6P05 witnessed reductions in the proppant volume and fracturing cost by 21% and 41.9%, respectively. However, the horizontal sections of both wells produced comparable daily gas production. The experimental results indicate that the multi-round diverting fracturing technology, partially solving the problem that fractures propagate on one side of a horizontal well due to the stress differences on both sides, promotes the uniform propagation of induced fractures on both sides of a wellbore and thus ensures a high production degree and post-fracturing production of deep coal reservoirs. This technology serves as a main technical method for reducing the costs and increasing the efficiency of fracturing technology for deep CBM.

Keywords

eastern margin of the Ordos Basin, deep coalbed methane, ultra-large-scale fracturing, microstress field, multiple round

DOI

10.12363/issn.1001-1986.23.10.0683

Reference

[1] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68.

GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.

[2] 郑民,李建忠,吴晓智,等. 我国主要含油气盆地油气资源潜力及未来重点勘探领域[J]. 地球科学,2019,44(3):833−847.

ZHENG Min,LI Jianzhong,WU Xiaozhi,et al. Potential of oil and natural gas resources of main hydrocarbon–bearing basins and key exploration fields in China[J]. Earth Science,2019,44(3):833−847.

[3] 孙德强,高文凯,郑军卫,等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源,2021,43(1):33−38.

SUN Deqiang,GAO Wenkai,ZHENG Junwei,et al. Bottlenecks restricting the development of coalbed methane in China and policy recommendations[J]. Energy of China,2021,43(1):33−38.

[4] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.

NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.

[5] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.

ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.

[6] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118.

ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118.

[7] 朱根根,谢志涛,王涛,等. 大宁–吉县区块山西组煤储层微观孔隙结构特征[J]. 煤矿安全,2024,55(8):9−21.

ZHU Gengen,XIE Zhitao,WANG Tao,et al. Microscopic pore structure characteristics of Shanxi Formation coal reservoir in Daning–Jixian Block[J]. Safety in Coal Mines,2024,55(8):9−21.

[8] 杨秀春,宋柏荣,陈国辉,等. 大宁–吉县区块深层煤岩多尺度孔缝结构特征[J]. 特种油气藏,2022,29(5):94−100.

YANG Xiuchun,SONG Bairong,CHEN Guohui,et al. Characteristics of multi–scale pore–fracture structure of deep coal rocks in the Daning–Jixian Block[J]. Special Oil and Gas Reservoirs,2022,29(5):94−100.

[9] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

[10] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.

XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.

[11] 高向东,孙昊,王延斌,等. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制[J]. 煤炭科学技术,2022,50(8):140−150.

GAO Xiangdong,SUN Hao,WANG Yanbin,et al. In–situ stress field of deep coal reservoir in Linxing area and its control on fracturing crack[J]. Coal Science and Technology,2022,50(8):140−150.

[12] 武瑾,肖玉峰,刘丹,等. 海陆过渡相页岩气储层非均质性及其主控因素:以鄂尔多斯盆地东缘大宁–吉县区块山西组为例[J]. 东北石油大学学报,2022,46(4):12−23.

WU Jin,XIAO Yufeng,LIU Dan,et al. Heterogeneity of shale gas reservoirs in marine–continental transitional facies and its controlling factors:An example of Shanxi Formation in Daning–Jixian Block on eastern margin of Ordos Basin[J]. Journal of Northeast Petroleum University,2022,46(4):12−23.

[13] 王成旺,甄怀宾,陈高杰,等. 大宁–吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质,2022,34(2):1−5.

WANG Chengwang,ZHEN Huaibin,CHEN Gaojie,et al. Assessment of coal No. 8 reservoir features and fracturability in Da ning–Jixian Block deep part[J]. Coal Geology of China,2022,34(2):1−5.

[14] 邢亚楠,张松航,唐书恒,等. 滇东老厂矿区煤层气储层地应力特征研究[J]. 煤炭科学技术,2020,48(6):199−206.

XING Yanan,ZHANG Songhang,TANG Shuheng,et al. Study on in–situ stress characteristics of coalbed methane reservoir in Laochang mining area,eastern Yunnan[J]. Coal Science and Technology,2020,48(6):199−206.

[15] 刘英君,朱海燕,唐煊赫,等. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律[J]. 天然气工业,2022,42(2):82−92.

LIU Yingjun,ZHU Haiyan,TANG Xuanhe,et al. Four–dimensional in–situ stress model of CBM reservoirs based on geology–engineering integration[J]. Natural Gas Industry,2022,42(2):82−92.

[16] 刘乃震,张兆鹏,邹雨时,等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发,2018,45(6):1059−1068.

LIU Naizhen,ZHANG Zhaopeng,ZOU Yushi,et al. Propagation law of hydraulic fractures during multi–staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development,2018,45(6):1059−1068.

[17] 孙健,刘伟,惠徐宁,等. 煤层气储层地应力特征及其对压裂效果的影响[J]. 钻采工艺,2017,40(6):45−48.

SUN Jian,LIU Wei,HUI Xuning,et al. Characteristics of in–situ stress at coalbed methane reservoir and its effects on fracturing results[J]. Drilling and Production Technology,2017,40(6):45−48.

[18] 游敬熙,翁晓卫. 水力压裂力学(第二版)[M]. 北京:石油工业出版社,2019.

[19] 霍志星. 深层煤层气压裂技术的研究与应用[J]. 化工管理,2017(16):189.

HUO Zhixing. Research and application of deep coal seam pressure fracturing technology[J]. Chemical Engineering Management,2017(16):189.

[20] 张军涛,郭庆,汶锋刚. 深层煤层气压裂技术的研究与应用[J]. 延安大学学报(自然科学版),2015,34(1):78−80.

ZHANG Juntao,GUO Qing,WEN Fenggang. Research and application of deep coal bed methane fracturing technology[J]. Journal of Yan’an University (Natural Science Edition),2015,34(1):78−80.

[21] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.

YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.

[22] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296.

YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology–engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.

[23] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1−11.

WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of south Yanchuan[J]. Petroleum Reservoir Evaluation and Development,2020,10(4):1−11.

[24] 智慧文,胡永章. 元坝气田地应力测井计算研究[J]. 物探化探计算技术,2015,37(6):743−748.

ZHI Huiwen,HU Yongzhang. Study on well logging with crustal stress calculation in Yuanba gas field[J]. Computing Techniques for Geophysical and Geochemical Exploration,2015,37(6):743−748.

[25] 赵海峰,陈勉,金衍,等. 页岩气藏网状裂缝系统的岩石断裂动力学[J]. 石油勘探与开发,2012,39(4):465−470.

ZHAO Haifeng,CHEN Mian,JIN Yan,et al. Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J]. Petroleum Exploration and Development,2012,39(4):465−470.

[26] 白岳松,胡耀青,李杰. 压裂液黏度和注液速率对含层理页岩水力裂缝扩展行为的影响规律研究[J]. 煤矿安全,2023,54(12):18−24.

BAI Yuesong,HU Yaoqing,LI Jie. Study on the influence law of fracturing fluid viscosity and liquid injection rate on propagation behavior of hydraulic fractures in laminated shale[J]. Safety in Coal Mines,2023,54(12):18−24.

[27] 常闯,李松,汤达祯,等. 基于测井参数的煤储层地应力计算方法研究:以延川南区块为例[J]. 煤田地质与勘探,2023,51(5):23−32.

CHANG Chuang,LI Song,TANG Dazhen,et al. In–situ stress calculation for coal reservoirs based on log parameters:A case study of the southern Yanchuan Block[J]. Coal Geology & Exploration,2023,51(5):23−32.

[28] 王理国,唐兆青,李玉魁,等. 煤层气井层内转向压裂技术研究与应用[J]. 煤田地质与勘探,2018,46(2):8−14.

WANG Liguo,TANG Zhaoqing,LI Yukui,et al. Research and application of deflection fracturing technology in coalbed methane well[J]. Coal Geology & Exploration,2018,46(2):8−14.

[29] 程相征. 塔河油田酸压暂堵转向研究[D]. 北京:中国石油大学(北京),2017.

CHENG Xiangzheng. A research on temporary plugging–divertion of acid fracturing in Tahe oilfield[D]. Beijing:China University of Petroleum(Beijing),2017.

[30] 苏现波,范渐,王然,等. 煤储层水力压裂裂缝内支撑剂运移控制因素实验研究[J]. 煤田地质与勘探,2023,51(6):62−73.

SU Xianbo,FAN Jian,WANG Ran,et al. An experimental study on factors controlling the proppant transport in hydraulic fractures of coal reservoirs[J]. Coal Geology & Exploration,2023,51(6):62−73.

[31] 毛金成,卢伟,张照阳,等. 暂堵重复压裂转向技术研究进展[J]. 应用化工,2018,47(10):2202−2206.

MAO Jincheng,LU Wei,ZHANG Zhaoyang,et al. Research and development of demporary plugging diverting technology for reservoir re–stimulation[J]. Applied Chemical Industry,2018,47(10):2202−2206.

[32] MENG Yanjun,TANG Dazhen,XU Hao,et al. Geological controls and coalbed methane production potential evaluation:A case study in Liulin area,eastern Ordos Basin,China[J]. Journal of Natural Gas Science and Engineering,2014,21:95−111.

[33] YAO Yanbin,LIU Dameng,YAN Taotao. Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field,southeastern Ordos Basin[J]. International Journal of Coal Geology,2014,121:148−159.

[34] ARBATAN T,FANG Xiya,SHEN Wei. Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean–ups[J]. Chemical Engineering Journal,2011,166(2):787−791.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.