•  
  •  
 

Coal Geology & Exploration

Authors

TANG Boning, National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, ChinaFollow
QIU Nansheng, National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, ChinaFollow
ZHU Chuanqing, National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
CHANG Jian, National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
LI Xiao, National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
HUANG Yue, National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
YANG Junsheng, National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
FU Xiuli, Exploration and Development Research Institute of PeotroChina Daqing Oilfield Co., Ltd., Daqing 163712, China

Abstract

The paleo-geothermal field of a basin is closely related to the formation and evolution of geothermal, oil, and gas resources. To ascertain the characteristics of the paleo-geothermal field in the Songliao Basin during some critical periods, this study established the thermal conductivity column of rocks in the basin using measurements from 269 samples and compiled previous data. Then, it simulated the burial and thermal histories of multiple wells under the constraint of vitrinite reflectance (Rran). The results indicate that the thermal conductivity of the Songliao Basin increases with the depth, with increasing rates higher in the upper strata than in the lower strata and an average of 1.79 W/(m·K). Furthermore, the thermal conductivity also increases with the age of strata. The Rran of the northern Songliao Basin primarily ranges from 0.8% to 1.6%, peaking in the Qijiagulong sag. The burial and thermal histories reveal that the paleo-geotemperature of the Cretaceous Qingshankou Formation peaked in the late stage of the Mingshui Formation deposition, followed by a gradual decrease until the present. The planar distribution of the paleo-geothermal field indicates that the Qingshankou Formation in the northern Songliao Basin exhibited a maximum paleo-geotemperature of above 120°C in most areas, which is significantly higher than the present level. The basin entered the thermal subsidence stage after the deposition of the Qingshankou Formation, and its paleo-geotemperature gradually peaked with an increase in the paleo-burial depth. In this stage, the high paleo-geotemperature was favorable for the maturation of shale oil and gas. In the late stage of the Mingshui Formation, the Songliao Basin underwent a notable uplifting and cooling event under the influence of the movement of the Paleo-Pacific Plate. In the cooling process, areas with a small decreasing amplitude of the geothermal gradient became favorable areas of geothermal conditions. The results of this study will provide a theoretical reference for research on the formation mechanisms of geothermal, oil, and gas resources in the Songliao Basin.

Keywords

Songliao Basin, paleo-geothermal field, thermal conductivity, vitrinite reflectance, burial-thermal histories

DOI

10.12363/issn.1001-1986.23.11.0721

Reference

[1] JIANG Guangzheng,WANG Yi,SHI Yizuo,et al. Estimate of hot dry rock geothermal resource in Daqing oilfield,northeast China[J]. Energies,2016,9(10):731.

[2] 刘雨晨,柳波,朱焕来,等. 松辽盆地现今地温场分布特征及主控因素[J]. 地质学报,2023,97(8):2715−2727.

LIU Yuchen,LIU Bo,ZHU Huanlai,et al. The distribution characteristics and main controlling factors of present–day geothermal regime of the Songliao Basin[J]. Acta Geologica Sinica,2023,97(8):2715−2727.

[3] 庞忠和,罗霁,程远志,等. 中国深层地热能开采的地质条件评价[J]. 地学前缘,2020,27(1):134−151.

PANG Zhonghe,LUO Ji,CHENG Yuanzhi,et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers,2020,27(1):134−151.

[4] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31.

WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review,2012,30(32):25−31.

[5] 王贵玲,马峰,侯贺晟,等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报,2023,44(1):21−32.

WANG Guiling,MA Feng,HOU Hesheng,et al. Study of depression and layer controlled geothermal system in Songliao Basin[J]. Acta Geoscientica Sinica,2023,44(1):21−32.

[6] 何文渊,柳波,张金友,等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学,2023,48(1):49−62.

HE Wenyuan,LIU Bo,ZHANG Jinyou,et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science,2023,48(1):49−62.

[7] 孙龙德,崔宝文,朱如凯,等. 古龙页岩油富集因素评价与生产规律研究[J]. 石油勘探与开发,2023,50(3):441−454.

SUN Longde,CUI Baowen,ZHU Rukai,et al. Shale oil enrichment evaluation and production law in Gulong Sag,Songliao Basin,NE China[J]. Petroleum Exploration and Development,2023,50(3):441−454.

[8] 张水昌,张斌,王晓梅,等. 松辽盆地古龙页岩油富集机制与常规–非常规油有序分布[J]. 石油勘探与开发,2023,50(5):911−923.

ZHANG Shuichang,ZHANG Bin,WANG Xiaomei,et al. Gulong shale oil enrichment mechanism and orderly distribution of conventional–unconventional oils in the Cretaceous Qingshankou Formation,Songliao Basin,NE China[J]. Petroleum Exploration and Development,2023,50(5):911−923.

[9] 赵文智,朱如凯,刘伟,等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘,2023,30(1):116−127.

ZHAO Wenzhi,ZHU Rukai,LIU Wei,et al. Lacustrine medium–high maturity shale oil in onshore China:Enrichment conditions and occurrence features[J]. Earth Science Frontiers,2023,30(1):116−127.

[10] CUI Yue,ZHU Chuanqing,QIU Nansheng,et al. The heat source origin of geothermal resources in Xiong’an New Area,North China,in view of the influence of igneous rocks[J]. Frontiers in Earth Science,2022,10:818129.

[11] GUO Sasa,ZHU Chuanqing,QIU Nansheng,et al. Present geothermal characteristics and influencing factors in the Xiong’an New Area,North China[J]. Energies,2019,12(20):3884.

[12] QIU Nansheng,CHANG Jian,ZHU Chuanqing,et al. Thermal regime of sedimentary basins in the Tarim,Upper Yangtze and North China Cratons,China[J]. Earth–Science Reviews,2022,224:103884.

[13] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编 (第四版)[J]. 地球物理学报,2016,59(8):2892−2910.

JIANG Guangzheng,GAO Peng,RAO Song,et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892−2910.

[14] 施亦做,王社教,肖红平,等. 基于三维地质建模的松辽盆地北部地温场模拟[J]. 天然气工业,2022,42(4):46−53.

SHI Yizuo,WANG Shejiao,XIAO Hongping,et al. 3D GeoModeller–based simulation of the geothermal field in the northern Songliao Basin[J]. Natural Gas Industry,2022,42(4):46−53.

[15] 马峰,高俊,王贵玲,等. 雄安新区容城地热田碳酸盐岩热储采灌数值模拟[J]. 吉林大学学报 (地球科学版),2023,53(5):1534−1548.

MA Feng,GAO Jun,WANG Guiling,et al. Numerical simulation of exploitation and reinjection of carbonate geothermal reservoir in Rongcheng geothermal field,Xiong’an New Area[J]. Journal of Jilin University (Earth Science Edition),2023,53(5):1534−1548.

[16] CHEKHONIN E,POPOV Y,PESHKOV G,et al. On the importance of rock thermal conductivity and heat flow density in basin and petroleum system modelling[J]. Basin Research,2020,32(5):1271−1286.

[17] ELISON P,NIEDERAU J,VOGT C,et al. Quantification of thermal conductivity uncertainty for basin modeling[J]. AAPG Bulletin,2019,103(8):1787−1809.

[18] TANG Boning,ZHU Chuanqing,QIU Nansheng,et al. Analyzing and estimating thermal conductivity of sedimentary rocks from mineral composition and pore property[J]. Geofluids,2021,2021:6665027.

[19] TANG Boning,ZHU Chuanqing,XU Ming,et al. Thermal conductivity of sedimentary rocks in the Sichuan Basin,southwest China[J]. Energy Exploration & Exploitation,2019,37(2):691−720.

[20] 宋嘉佳,王贵玲,邢林啸,等. 岩石热导率校正对大地热流计算值的影响:以渤海湾盆地冀中坳陷为例[J]. 地质论评,2023,69(4):1349−1364.

SONG Jiajia,WANG Guiling,XING Linxiao,et al. Influence of rock thermal conductivity correction on the calculated value of terrestrial heat flow:A case study of Jizhong Depression,Bohai Bay Basin[J]. Geological Review,2023,69(4):1349−1364.

[21] WANG Shaoyi,CHENG Yinhang,ZENG Le,et al. Thermal imprints of Cenozoic tectonic evolution in the Songliao Basin,NE China:Evidence from apatite fission–track (AFT) of CCSD–SK1 borehole[J]. Journal of Asian Earth Sciences,2020,195:104353.

[22] 方石,刘招君,郭巍. 松辽盆地与大兴安岭新生代热构造耦合研究[J]. 核技术,2005,28(9):717−721.

FANG Shi,LIU Zhaojun,GUO Wei. Thermal structure research on Cenozoic in Songliao Basin and Dahinganling Mountain[J]. Nuclear Techniques,2005,28(9):717−721.

[23] SONG Ying,STEPASHKO A,LIU Keyu,et al. Post–rift tectonic history of the Songliao Basin,NE China:Cooling events and post–rift unconformities driven by orogenic pulses from plate boundaries[J]. Journal of Geophysical Research:Solid Earth,2018,123(3):2363−2395.

[24] 向才富,冯志强,庞雄奇,等. 松辽盆地晚期热历史及其构造意义:磷灰石裂变径迹(AFT)证据[J]. 中国科学(D辑:地球科学),2007,37(8):1024−1031.

XIANG Caifu,FENG Zhiqiang,PANG Xiongqi,et al. Late stage thermal history of the Songliao Basin and its tectonic implications:Evidence from apatite fission track (AFT) analyses[J]. Science in China:Earth Sciences,2007,37(8):1024−1031.

[25] 杨峰平,陈发景,王玉华,等. 松辽盆地中央坳陷磷灰石裂变径迹分析[J]. 石油勘探与开发,1995,22(6):20−25.

YANG Fengping,CHEN Fajing,WANG Yuhua,et al. Apatite fission track analysis in the Central Depression,Songliao Basin[J]. Petroleum Exploration and Development,1995,22(6):20−25.

[26] CHENG Yinhang,WANG Shaoyi,LI Ying,et al. Late Cretaceous–Cenozoic thermochronology in the southern Songliao Basin,NE China:New insights from apatite and zircon fission track analysis[J]. Journal of Asian Earth Sciences,2018,160:95−106.

[27] CHENG Yinhang,WANG Shaoyi,ZHANG Tianfu,et al. Regional sandstone–type uranium mineralization rooted in Oligo–Miocene tectonic inversion in the Songliao Basin,NE China[J]. Gondwana Research,2020,88:88−105.

[28] SONG Ying,REN Jianye,LIU Keyu,et al. Post–rift anomalous thermal flux in the Songliao Basin,NE China,as revealed from fission track thermochronology and tectonic analysis[J]. Palaeogeography Palaeoclimatology Palaeoecology,2018,508:148−165.

[29] 李志安. 松辽盆地地幔热流的演化特征[J]. 大地构造与成矿学,1995,19(2):104−112.

LI Zhi’an. Evolutionary features of mantle heat flux in Songliao Basin[J]. Geotectonica et Metallogenia,1995,19(2):104−112.

[30] 任战利,萧德铭,迟元林,等. 松辽盆地基底石炭–二叠系热演化史[J]. 石油与天然气地质,2011,32(3):430−439.

REN Zhanli,XIAO Deming,CHI Yuanlin,et al. Restoration of thermal history of the Permo–Carboniferous basement in the Songliao Basin[J]. Oil & Gas Geology,2011,32(3):430−439.

[31] 李兴伟. 松辽盆地北部大庆长垣埋藏史、热史模拟[J]. 大庆石油地质与开发,2015,34(1):46−50.

LI Xingwei. Numerical simulations of the burial & thermal histories for Daqing Placanticline in north Songliao Basin[J]. Petroleum Geology and Oilfield Development in Daqing,2015,34(1):46−50.

[32] 何生,陶一川,姜鹏. 利用多种古地温计研究松辽盆地东南隆起区的地热史[J]. 地球科学:中国地质大学学报,1995,20(3):328−334.

HE Sheng,TAO Yichuan,JIANG Peng. Study on geothermal history in swell area of southeast Songliao Basin by using several paleogeothermometers[J]. Earth Science:Journal of China University of Geosciences,1995,20(3):328−334.

[33] 秦健铭,陈积权,高远,等. 松辽盆地晚白垩世陆表古温度定量重建:以 LD6–7 井嫩江组一、二段为例[J]. 沉积学报,2020,38(4):759−770.

QIN Jianming,CHEN Jiquan,GAO Yuan,et al. Quantitative paleotemperature reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin:A case study of the LD6–7 core[J]. Acta Sedimentologica Sinica,2020,38(4):759−770.

[34] GAO Yuan,WANG Chengshan,LIU Zhifei,et al. Diagenetic and paleoenvironmental controls on Late Cretaceous clay minerals in the Songliao Basin,northeast China[J]. Clays and Clay Minerals,2015,63(6):469−484.

[35] 邱楠生,胡圣标,何丽娟. 沉积盆地地热学[M]. 北京:中国石油大学出版社,2019.

[36] SUN Deyou,GOU Jun,WANG Tianhao,et al. Geochronological and geochemical constraints on the Erguna massif basement,NE China–subduction history of the Mongol–Okhotsk oceanic crust[J]. International Geology Review,2013,55(14):1801−1816.

[37] WANG Tao,GUO Lei,ZHANG Lei,et al. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas,NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences,2015,97(Sup.1):365−392.

[38] WU Fuyuan,SUN Deyou,GE Wenchun,et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences,2011,41(1):1−30.

[39] XU Wenliang,PEI Fuping,WANG Feng,et al. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences,2013,74(Sup.1):167−193.

[40] 高瑞祺,蔡希源. 松辽盆地油气田形成条件与分布规律[M]. 北京:石油工业出版社,1997.

[41] 吴乾蕃,谢毅真. 松辽盆地大地热流[J]. 地震地质,1985,7(2):59−64.

WU Qianfan,XIE Yizhen. Geothermal heat flow in the Songhuajiang–Liaoning Basin[J]. Seismology and Geology,1985,7(2):59−64.

[42] 吴乾蕃. 松辽盆地地热场[J]. 地震研究,1991,14(1):31−40.

WU Qianfan. The geothermal field in Songliao Basin[J]. Journal of Seismological Research,1991,14(1):31−40.

[43] 马峰,王贵玲,孙占学,等. 利用测井资料获取松辽盆地深部热物性参数[J]. 地球学报,2019,40(2):350–360.

MA Feng ,WANG Guiling ,SUN Zhanxue,et al. An analysis of thermal conductivity in Songliao Basin based on logging parameters[J]. Acta Geoscientica Sinica,2019,40(2):350–360.

[44] 郭晓阳. 基于松科Ⅱ井的深部地层岩石热物性参数影响因素分析[D]. 北京:中国石油大学(北京),2020.

GUO Xiaoyang. Analysis of factors influencing thermal Physical parameters of deep strata rocks based on Songke II[D]. Beijing :China University of Petroleum (Beijing),2020.

[45] SHI Yizuo,JIANG Guangzheng,SHI Shangming,et al. Terrestrial heat flow and its geodynamic implications in the northern Songliao Basin,northeast China[J]. Geophysical Journal International,2022,229(2):962−983.

[46] JIANG Guangzheng,TIAN Yuntao,LYU Qingtian,et al. Ground surface temperature history since the last glacial maximum in northeast Asia:Reconstructions from the borehole geotherms of the international continental scientific drilling program[J]. Geophysical Research Letters,2023,50(8):e2023GL103055.

[47] 吴志远. 松辽盆地南部长岭凹陷中浅层地温场特征及其影响因素分析[D]. 大庆:东北石油大学,2023.

WU Zhiyuan. Analysis of middle and shallow geothermal field characteristics and influencing factors in Changling Sag in southern Songliao Basin[D]. Daqing:Northeast Petroleum University,2023.

[48] 张翘然,肖红平,饶松,等. 松辽盆地现今地温场特征及控制因素[J]. 地质科技通报,2023,42(5):191−204.

ZHANG Qiaoran,XIAO Hongping,RAO Song,et al. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):191−204.

[49] 周庆华,冯子辉,门广田. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J]. 中国科学(D辑:地球科学),2007,37(增刊2):177−188.

ZHOU Qinghua,FENG Zihui,MEN Guangtian. Present geotemperature and its suggestion to natural gas generation in Xujiaweizi Fault Depression of the northern Songliao Basin[J]. Science in China:Earth Sciences,2007,37(Sup.2):177−188.

[50] 于琪. 松辽盆地徐家围子断陷干热岩地热资源研究[D]. 大庆:东北石油大学,2021.

YU Qi. Research of geothermal resources on hot dry rock in Xujiaweizi Fault Depression,Songliao Basin[D]. Daqing:Northeast Petroleum University,2021.

[51] WU Shaohua,YU Ziwang,KANG Jianguo,et al. Research on the anisotropy of thermal conductivity of rocks in Songliao Basin,China[J]. Renewable Energy,2021,179:593−603.

[52] WOODSIDE W,MESSMER J H. Thermal conductivity of porous media I. Unconsolidated sands[J]. Journal of Applied Physics,1961,32(9):1688−1699.

[53] SASS J H,LACHENBRUCH A H,MOSES T H,et al. Heat flow from a scientific research well at Cajon Pass,California[J]. Journal of Geophysical Research Atmospheres,1992,97(B4):5017−5030.

[54] LEE Y,DEMING D. Evaluation of thermal conductivity temperature corrections applied in terrestrial heat flow studies[J]. Journal of Geophysical Research:Solid Earth,1998,103(B2):2447−2454.

[55] SEKIGUCHI K. A method for determining terrestrial heat flow in oil basinal areas[J]. Tectonophysics,1984,103(1/2/3/4):67−79.

[56] WANG Yibo,WANG Lijuan,HU Di,et al. The present–day geothermal regime of the north Jiangsu Basin,East China[J]. Geothermics,2020,88:101829.

[57] SUN Qiang,CHEN Shen’en,GAO Qiao,et al. Analyses of the factors influencing sandstone thermal conductivity[J]. Acta Geodynamica et Geomaterialia,2017,14(2):173−180.

[58] FUCHS S. The variability of rock thermal properties in sedimentary basins and the impact on temperature modelling:A Danish example[J]. Geothermics,2018,76:1−14.

[59] FUCHS S,BALLING N,FÖRSTER A. Calculation of thermal conductivity,thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs[J]. Geophysical Journal International,2015,203(3):1977−2000.

[60] 吏成辉,程银行,王铁军,等. 松辽盆地新生代构造演化对砂岩型铀矿成矿的控制作用:来自磷灰石裂变径迹的证据[J]. 地质学报,2020,94(10):2856−2873.

LI Chenghui,CHENG Yinhang,WANG Tiejun,et al. The controlling effect of Cenozoic tectonic evolution on the mineralization of sandstone–type uranium deposits in the Songliao Basin:Evidence from apatite fission tracks[J]. Acta Geologica Sinica,2020,94(10):2856−2873.

[61] 万双双. 松辽盆地北部构造演化研究[D]. 成都:成都理工大学,2012.

WAN Shuangshuang. The study on tectonic evolution in north Songliao Basin[D]. Chengdu:Chengdu University of Technology,2012.

[62] SWEENEY J J,BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin,1990,74(10):1559−1570.

[63] WANG Shaoyi,CHENG Yinhang,XU Donghai,et al. Late Cretaceous–Cenozoic tectonic–sedimentary evolution and U–enrichment in the southern Songliao Basin[J]. Ore Geology Reviews,2020,126:103786.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.