•  
  •  
 

Coal Geology & Exploration

Abstract

Sinters of geothermal system are usually dominated by travertine and siliceous sinter. With rich information on multi-temporal and spatial scales, they can be used to restore paleohydrological and paleoclimatic histories, reconstruct the evolutionary process of regional hydrothermal activity, and constrain tectonic modes. Accurate dating of sinters is the basis of relevant researches. Common dating methods include radiocarbon dating (based on inorganic and organic carbon), uranium series disequilibrium dating, cosmogenic nuclide dating, optically stimulated luminescence (OSL) dating, and electron spin resonance dating. Radiocarbon dating has primarily used for the dating of hot-spring sinters in China, followed by electron spin resonance dating and uranium series disequilibrium dating, which have been applied more widely. This study systematically reviewed the basic principles, dating ranges, applicable conditions, and requirements for samples of these methods. Furthermore, the existing problems and future development directions of these methods are proposed. For travertine samples, those with high purity carbon can be dated using organic carbon-based radiocarbon and uranium series disequilibrium dating, while well-consolidated samples can also be dated using electron spin resonance method. For these samples, paleomagnetic dating worth further exploration. For siliceous sinter samples, organic carbon-based radiocarbon dating and electron spin resonance dating are more suitable, while uranium series disequilibrium and paleomagnetic dating can be tried. Additionally, cosmogenic nuclide dating, such as those using 10Be and 26Al, can be used for paleosinter dating. The two main challenges of dating are sample with low purity problem (or difficult correction) and limited dating range. For the first challenge, the ion probe technique can be used to determine the isotopes of U and Th in the microscopically high-purity calcite to obtain the sample ages. To improve the representativeness of problem samples, it is necessary to measure as many uniformly distributed points as possible. These data can be used to determine the sinter ages on a million-year scale by obtaining long-half-life cosmogenic nuclides. Further development of dating methods will focuses on the research of new techniques and the quantitative correction of low-purity samples.

Keywords

geothermal system, hydrothermal activity, travertine, siliceous sinter, dating method

DOI

10.12363/issn.1001-1986.23.09.0556

Reference

[1] 王焰新,马腾,郭清海,等. 地下水与环境变化研究[J]. 地学前缘,2005,12(增刊1):14−21.

WANG Yanxin,MA Teng,GUO Qinghai,et al. Groundwater and environmental change[J]. Earth Science Frontiers,2005,12(Sup.1):14−21.

[2] YOKOYAMA T,SATO Y,NAKAI M,et al. Siliceous deposits formed from geothermal water in Kyushu,Japan:II. Distribution and state of aluminum along the growth direction of the deposits[J]. Geochemical Journal,1999,33(1):13−18.

[3] 陆艺,苏金宝,谭红兵,等. 西藏东南缘地热泉华的地球化学特征和成因[J]. 矿物岩石地球化学通报,2019,38(6):1207−1217.

LU Yi,SU Jinbao,TAN Hongbing,et al. Geochemical characteristics and origin of sinters in the southeastern margin of Tibet[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(6):1207−1217.

[4] 高竞. 地下热水钙华沉积的水化学影响因素和热水钙华微层的气候环境指示意义[D]. 北京:中国地质大学(北京),2013.

GAO Jing. Hydrochemical control factors of travetine precipitation and the significance of laminated travetine as archives of climate and environment[D]. Beijing:China University of Geosciences (Beijing),2013.

[5] 沈永平. 西藏科亚古泉华的发现及其意义[J]. 科学通报,1986(21):1654−1657.

SHEN Yongping. The discovery and significance of ancient spring flower in Keya,Tibet[J]. Chinese Science Bulletin,1986(21):1654−1657.

[6] WANG Haijing,YAN Hao,LIU Zaihua. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine,China:Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta,2014,125:34−48.

[7] WANG Zhijun,YIN Jianjun,CHENG Hai,et al. Climatic controls on travertine deposition in southern Tibet during the Late Quaternary[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,589:110852.

[8] SUN Hailong,SHEN Chuanchou,WU Chungche,et al. Subannual–to–biannual–resolved travertine record of Asian Summer Monsoon dynamics in the early Holocene at the eastern margin of Tibetan Plateau[J]. Applied Geochemistry,2022,141:105305.

[9] ZENTMYER R,MYROW P M,NEWELL D L. Travertine deposits from along the South Tibetan Fault System near Nyalam,Tibet[J]. Geological Magazine,2008,145(6):753−765.

[10] SU Jinbao,TAN Hongbing,CHEN Xi. The groundwater deep circulation and large–scale geothermal deposition in response to the extension of the Yadong–Gulu rift,South Tibet,China[J]. Journal of Volcanology and Geothermal Research,2020,395:106836.

[11] MADDY D,VELDKAMP A,DEMIR T,et al. Early Pleistocene River Terraces of the Gediz River,Turkey:The role of faulting,fracturing,volcanism and travertines in their genesis[J]. Geomorphology,2020,358:107102.

[12] YILDIRIM G,MUTLU H,KARABACAK V,et al. Temporal changes in geochemical–isotopic systematics of the Late Pleistocene Akkaya travertines (Turkey):Implications for fluid flow circulation and seismicity[J]. Geochemistry,2020,80(4):125630.

[13] BROGI A,ALÇIÇEK M C,LIOTTA D,et al. Step–over fault zones controlling geothermal fluid–flow and travertine formation (Denizli Basin,Turkey)[J]. Geothermics,2021,89:101941.

[14] JANSSENS N,CAPEZZUOLI E,CLAES H,et al. Fossil travertine system and its palaeofluid provenance,migration and evolution through time:Example from the geothermal area of Acquasanta Terme (Central Italy)[J]. Sedimentary Geology,2020,398:105580.

[15] BROGI A,LIOTTA D,CAPEZZUOLI E,et al. Travertine deposits constraining transfer zone neotectonics in geothermal areas:An example from the inner Northern Apennines (Bagno Vignoni–Val d’Orcia area,Italy)[J]. Geothermics,2020,85:101763.

[16] FELBER H. On the radiocarbon dating of a hydrothermal wart sinter from Badgastein[J]. TMPM Tschermaks Mineralogische und Petrographische Mitteilungen,1972,17(3):222−231.

[17] SCHWARCZ H P,BLACKWELL B,GOLDBERG P,et al. Uranium series dating of travertine from archaeological sites,Nahal Zin,Israel[J]. Nature,1979,277(5697):558−560.

[18] 文华国,罗连超,罗晓彤,等. 陆地热泉钙华研究进展与展望[J]. 沉积学报,2019,37(6):1162−1180.

WEN Huaguo,LUO Lianchao,LUO Xiaotong,et al. Advances and prospects of terrestrial thermal spring travertine research[J]. Acta Sedimentologica Sinica,2019,37(6):1162−1180.

[19] 游雅贤,文华国,郑荣才,等. 陆地热泉硅华研究进展与展望[J]. 地质科技情报,2019,38(1):68−81.

YOU Yaxian,WEN Huaguo,ZHENG Rongcai,et al. Advances and prospects of the terrestrial geothermal siliceous sinter research[J]. Geological Science and Technology Information,2019,38(1):68−81.

[20] 周思宇,钟大康,孙海涛,等. 地层中的硅岩:研究进展及展望[J]. 古地理学报,2023,25(1):23−42.

ZHOU Siyu,ZHONG Dakang,SUN Haitao,et al. Siliceous rock in strata:Research progress and prospect[J]. Journal of Palaeogeography(Chinese Edition),2023,25(1):23−42.

[21] CAMPBELL K A,GUIDO D M,GAUTRET P,et al. Geyserite in hot–spring siliceous sinter:Window on Earth’s hottest terrestrial (paleo) environment and its extreme life[J]. Earth–Science Reviews,2015,148:44−64.

[22] 佟伟,朱梅湘,陈民扬. 西藏水热区硫同位素组成和深源热补给的研究[J]. 北京大学学报(自然科学版),1982(2):79−85.

TONG Wei,ZHU Meixiang,CHEN Minyang. Sulfur–isotopic analysis and studies upon the abyssal heat recharge of the Xizang’s (Tibet’s) hydrothermal activities[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,1982(2):79−85.

[23] 何世春. 羊八井地热田水文地球化学特征[J]. 中国地质,1983(6):19−21.

HE Shichun. Hydrogeochemical characteristics of Yangbajing geothermal field[J]. Geology in China,1983(6):19−21.

[24] 国家能源局. 地热能术语:NB/T 10097–2018[S]. 北京:中国石化出版社,2018.

[25] 中国科学院青藏高原综合科学考察队. 西藏地热[M]. 北京:科学出版社,1981.

[26] DICKIN A P. Radiogenic isotope geology[M]. Sydney:Cambridge University Press,1995.

[27] HAJDAS I,ASCOUGH P,GARNETT M H,et al. Radiocarbon dating[J]. Nature Reviews Methods Primers,2021,1(1):1−26.

[28] SCHWARCZ H P. Uranium series dating of Quaternary deposits[J]. Quaternary International,1989,1:7−17.

[29] SCHAEFER J M,CODILEAN A T,WILLENBRING J K,et al. Cosmogenic nuclide techniques[J]. Nature Reviews Methods Primers,2022,2(1):19.

[30] SRDOČ D,OBELIC B,HORVATINČIC N,et al. Radiocarbon dating of calcareous tufa:How reliable data can we expect?[J]. Radiocarbon,1980,22(3):858−862.

[31] KANO A,OKUMURA T,TAKASHIMA C,et al. Geomicrobiological properties and processes of travertine[J]. Springer Geology,2019,176:9−41.

[32] SRDOČ D,HORVATINČIĆ N,OBELIĆ B,et al. Radiocarbon dating of tufa in Paleoclimatic studies[J]. Radiocarbon,1983,25(2):421−427.

[33] NORONHA A L,JOHNSON K R,HU Chaoyong,et al. Assessing influences on speleothem dead carbon variability over the Holocene:Implications for speleothem–based radiocarbon calibration[J]. Earth and Planetary Science Letters,2014,394:20−29.

[34] GENTY D,MASSAULT M,GILMOUR M,et al. Calculation of past dead carbon proportion and variability by the comparison of AMS 14C and Tims U/TH ages on two Holocene stalagmites[J]. Radiocarbon,1999,41(3):251−270.

[35] BLYTH A J,HUA Quan,SMITH A,et al. Exploring the dating of “dirty” speleothems and cave sinters using radiocarbon dating of preserved organic matter[J]. Quaternary Geochronology,2017,39:92−98.

[36] HAMDAN M A,BROOK G A. Timing and characteristics of Late Pleistocene and Holocene wetter periods in the Eastern Desert and Sinai of Egypt,based on 14C dating and stable isotope analysis of spring tufa deposits[J]. Quaternary Science Reviews,2015,130(Sup.1):168−188.

[37] NISHIKAWA O,FURUHASHI K,MASUYAMA M,et al. Radiocarbon dating of residual organic matter in travertine formed along the Yumoto Fault in Oga Peninsula,northeast Japan:Implications for long–term hot spring activity under the influence of earthquakes[J]. Sedimentary Geology,2012,243:181−190.

[38] 赵元艺,赵希涛,马志邦,等. 西藏谷露热泉型铯矿床年代学及意义[J]. 地质学报,2010,84(2):211−220.

ZHAO Yuanyi,ZHAO Xitao,MA Zhibang,et al. Chronology of the Gulu hot spring cesium deposit in Nagqu,Tibet and it geological significance[J]. Acta Geologica Sinica,2010,84(2):211−220.

[39] GAO Jing,ZHOU Xun,FANG Bin,et al. U–series dating of the travertine depositing near the Rongma hot springs in northern Tibet,China,and its paleoclimatic implication[J]. Quaternary International,2013,298:98−106.

[40] 赵元艺,赵希涛,李振清,等. 西藏第四纪泉水活动与铯的成矿效应[M]. 北京:地质出版社,2010.

[41] LUDWIG K R,TITTERINGTON D M. Calculation of 230Th/U isochrons,ages,and errors[J]. Geochimica et Cosmochimica Acta,1994,58(22):5031−5042.

[42] KU T L,LIANG Zhuocheng. The dating of impure carbonates with decay–series isotopes[J]. Nuclear Instruments and Methods in Physics Research,1984,223(2-3):563−571.

[43] BISCHOFF J L,FITZPATRICK J A. U–series dating of impure carbonates:An isochron technique using total–sample dissolution[J]. Geochimica et Cosmochimica Acta,1991,55(2):543−554.

[44] KAUFMAN A. An evaluation of several methods for determining 230ThU ages in impure carbonates[J]. Geochimica et Cosmochimica Acta,1993,57(10):2303−2317.

[45] CHURCHILL D M,MANGA M,HURWITZ S,et al. Dating silica sinter (geyserite):A cautionary tale[J]. Journal of Volcanology and Geothermal Research,2020,402:106991.

[46] MALLICK R,FRANK N. A new technique for precise uranium–series dating of travertine micro–samples[J]. Geochimica et Cosmochimica Acta,2002,66(24):4261−4272.

[47] AMELIN Y,NEYMARK L. Opal as a uranium–lead geochronometer[C]//Ninth annual VM Goldschmidt Conference,1999:7335.

[48] NEMCHIN A A,NEYMARK L A,SIMONS S L. U–Pb SHRIMP dating of uraniferous opals[J]. Chemical Geology,2006,227(1/2):113−132.

[49] MAHER K,WOODEN J L,PACES J B,et al. 230Th–U dating of surficial deposits using the ion microprobe (SHRIMP–RG):A microstratigraphic perspective[J]. Quaternary International,2007,166(1):15−28.

[50] SCHAEFER J M,LIFTON N. COSMOGENIC NUCLIDE DATING , Methods[M]//ELIAS S A,MOCK C J. Encyclopedia of Quaternary Science (Second Edition). Amsterdam:Elsevier,2007:412–419.

[51] GOSSE J C. COSMOGENIC NUCLIDE DATING , Overview[M]//ELIAS S A,MOCK C J. Encyclopedia of Quaternary Science (Second Edition). Amsterdam:Elsevier,2007:409–411.

[52] IVY–OCHS S,KOBER F. COSMOGENIC NUCLIDE DATING , Exposure Geochronology[M]//ELIAS S A,MOCK C J. Encyclopedia of Quaternary Science (Second Edition). Amsterdam:Elsevier,2013:432–439.

[53] GOSSE J C,PHILLIPS F M. Terrestrial in situ cosmogenic nuclides:Theory and application[J]. Quaternary Science Reviews,2001,20(14):1475−1560.

[54] JONES R S,WHITEHOUSE P L,BENTLEY M J,et al. Impact of glacial isostatic adjustment on cosmogenic surface–exposure dating[J]. Quaternary Science Reviews,2019,212:206−212.

[55] KONG Ping,ZHENG Yong,FU Bihong. Cosmogenic nuclide burial ages and provenance of Late Cenozoic deposits in the Sichuan Basin:Implications for Early Quaternary glaciations in east Tibet[J]. Quaternary Geochronology,2011,6(3/4):304−312.

[56] LEBATARD A E,ALÇIÇEK M C,ROCHETTE P,et al. Dating the Homo erectus bearing travertine from Kocabaş (Denizli,Turkey) at least 1. 1 Ma[J]. Earth and Planetary Science Letters,2014,390:8–18.

[57] XU Hongyang,MIYAHARA H,HORIUCHI K,et al. High–resolution records of Be–10 in endogenic travertine from Baishuitai,China:A new proxy record of annual solar activity?[J]. Quaternary Science Reviews,2019,216:34−46.

[58] ENKELMANN E,JONCKHEERE R. Fission Track Dating[M]//ALDERTON D,ELIAS S A. Encyclopedia of Geology (Second Edition). Oxford:Academic Press,2021:116–131.

[59] BALESTRIERI M,BIGAZZI G,BOUŠKA V,et al. Potential glass age standards for fission–track dating:An overview[C]//Advances in Fission–Track Geochronology:A Selection of Papers Presented at the International Workshop on Fission–Track Dating,Ghent,Belgium,1996. Springer,1998:287–304.

[60] MURRAY A,ARNOLD L J,BUYLAERT J P,et al. Optically stimulated luminescence dating using quartz[J]. Nature Reviews Methods Primers,2021,1(1):72.

[61] YUKIHARA E G,MCKEEVER S W,ANDERSEN C E,et al. Luminescence dosimetry[J]. Nature Reviews Methods Primers,2022,2(1):26.

[62] LIAN O B. LUMINESCENCE DATING , Optical Dating[M]//ELIAS S A,MOCK C J. Encyclopedia of Quaternary Science (Second Edition). Amsterdam:Elsevier,2013:653–666.

[63] 邱登峰,云金表,刘全有,等. 石英电子自旋共振 (ESR) 的地学研究现状与展望[J]. 地质科学,2018,53(2):749−764.

QIU Dengfeng,YUN Jinbiao,LIU Quanyou,et al. The current research status and prospects of quartz electron spin resonance dating in geology[J]. Chinese Journal of Geology,2018,53(2):749−764.

[64] 何友兵. 基于热释光技术的沉积物标样制作和沉积物测年若干基础问题研究[D]. 北京:首都师范大学,2011.

HE Youbing. Research on some basic problems of sediment standard sample making and sediment dating based on thermoluminescence technology[D]. Beijing:Capital Normal University,2011.

[65] DE SARKAR S,MATHEW G,PANDE K,et al. Rapid denudation of Higher Himalaya during Late Pliestocence,evidence from OSL thermochronology[J]. Geochronometria,2013,40(4):304−310.

[66] ZHANG D D,LI S H. Optical dating of Tibetan human hand– and footprints:An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau[J]. Geophysical Research Letters,2002,29(5):1069.

[67] PREUSSER F,CHITHAMBO M L,GÖTTE T,et al. Quartz as a natural luminescence dosimeter[J]. Earth–Science Reviews,2009,97(1/2/3/4):184−214.

[68] GUILHEIRO J M,TATUMI S H,SOARES A D,et al. Correlation study between OSL,TL and PL emissions of yellow calcite[J]. Journal of Luminescence,2021,233:117881.

[69] GRÜN R. LUMINESCENCE DATING , Electron Spin Resonance Dating[M]//ELIAS S A,MOCK C J. Encyclopedia of Quaternary Science (Second Edition). Amsterdam:Elsevier,2007:1505–1516.

[70] GARRISON E G,ROWLETT R M,COWAN D L,et al. ESR dating of ancient flints[J]. Nature,1981,290:44−45.

[71] ODOM A L,RINK W J. Natural accumulation of Schottky–Frenkel defects:Implications for a quartz geochronometer[J]. Geology,1989,17(1):55−58.

[72] GRÜN R. ESR dating for the early earth[J]. Nature,1989,338:543−544.

[73] 王晟,吕同艳,吴中海,等. 藏南裂谷区晚第四纪泉华的 ESR 测年适用性研究[J]. 地质力学学报,2023,29(2):276−289.

WANG Sheng,LYU Tongyan,WU Zhonghai,et al. Research on the applicability of electron spin resonance dating of the Late Quaternary sinter deposits in the rift valley,southern Tibet[J]. Journal of Geomechanics,2023,29(2):276−289.

[74] CHEN Y,GAO J,FENG J. ESR dating of geyserites from intermittent geyser sites on the Tibetan Plateau[J]. Applied Radiation and Isotopes,1993,44(1/2):207−213.

[75] 李振清. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京:中国地质科学院,2002.

LI Zhenqing. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau[D]. Beijing:Chinese Academy of Geological Sciences,2002.

[76] MILLER G H,BRIGHAM–GRETTE J. Amino acid geochronology:Resolution and precision in carbonate fossils[J]. Quaternary International,1989,1:111−128.

[77] MILLER G H,MAGEE J W,JULL A J T. Low–latitude glacial cooling in the southern Hemisphere from Amino–acid racemization in emu eggshells[J]. Nature,1997,385(6613):241−244.

[78] MILLER G H,KAUFMAN D S,CLARKE S J. AMINO ACID DATING[M]//ELIAS S A,MOCK C J. Encyclopedia of Quaternary Science (Second Edition). Amsterdam:Elsevier,2013:37–48.

[79] COHEN A S. Paleolimnology:The history and evolution of lake systems[M]. New York:Oxford University Press,2003.

[80] JULL A J T. DATING TECHNIQUES[M]//ELIAS S A,MOCK C J. Encyclopedia of Quaternary Science (Second Edition). Amsterdam:Elsevier,2007:453–459.

[81] BRADBURY J P,GROSJEAN M,STINE S,et al. Full and late glacial lake records along the PEP 1 transect:Their role in developing interhemispheric paleoclimate interactions[M]//Interhemispheric Climate Linkages. Elsevier,2001:265–291.

[82] BULL W B. Lichenometry:A new way of dating and locating prehistorical earthquakes[J]. Quaternary Geochronology:Methods and Applications,2000,4:521−526.

[83] THOMSON M J. Paleoclimatology[M]//FATH B. Encyclopedia of Ecology (Second Edition). Second Edition. Oxford:Elsevier,2019:154–161.

[84] LI Jie,PANG Zhonghe,YANG Guomin,et al. Million–year–old groundwater revealed by krypton–81 dating in Guanzhong Basin,China[J]. Science Bulletin,2017,62(17):1181−1184.

[85] LI Jie,PANG Zhonghe,LIU Yulian,et al. Changes in groundwater dynamics and geochemical evolution induced by drainage reorganization:Evidence from 81Kr and 36Cl dating of geothermal water in the Weihe Basin of China[J]. Earth and Planetary Science Letters,2023,623:118425.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.