•  
  •  
 

Coal Geology & Exploration

Abstract

Meixian County in the piedmont of the Qinling Mountains boasts abundant geothermal water resources with high-abundance associated helium gas. However, the characteristics and origin of geothermal fluids in the study area are yet to be studied. By analyzing the chemical composition and isotopic geochemistry of geothermal fluids and combining the distributions of regional structures and faults, this study delved into the characteristics and genetic mechanisms of geothermal fluids in the study area. The results show that the geothermal water exhibits salinity ranging from 638.96 to 1026.83 mg/L and a hydrochemical type of HCO3-Na. The low-degree metamorphism suggests that the geothermal water is unbalanced water or partially balanced water, with solutes primarily originating from the weathering of silicate rocks. The geothermal water yielded δD and δ18O values ranging from −77.3‰ to −70.8‰ and from −10.9‰ to −9.8‰, respectively, both of which fell near the meteoric water line. Furthermore, the geothermal water features an average recharge elevation of approximately 1030 m, recharge water temperatures ranging between 4.9℃ and 7.0℃, and a maximum circulation depth of about 3200 m. The geothermal water-associated gas is dominated by nitrogen gas, exhibiting low hydrocarbon gas concentrations and high-abundance helium gas. The methane in the associated gas showed an average δ13C value of −52.8‰ and an average δD value of −247‰. Besides, the associated gas displayed low R/Ra ratios and high 4He/20Ne ratios. As revealed by this study, the meteoric water from the Qinling Mountains infiltrated downward into fault fractures and sandstone pores through deep-seated faults and their secondary faults, ultimately forming geothermal water via geothermal heating. The low-temperature and high-volume geothermal water in the study area is primarily formed by the close and sufficient water sources, poor sealing, and fast circulation at shallow depths. The helium in the associated gas was principally crust-derived and formed by the radioactive decay of uranium and thorium elements in crustal rocks. The results of this study will provide critical geochemical evidence for the exploitation and utilization of geothermal resources in the study area.

Keywords

low-temperature geothermal water, helium gas, hydrogen and oxygen isotopes, genetic mechanism, piedmont of Qinling Mountains

DOI

10.12363/issn.1001-1986.23.10.0639

Reference

[1] 李德生,李伯华. “双碳”背景下石油地质学的理论创新与迈向能源发展多元化新时代[J]. 地学前缘,2022,29(6):1−9.

LI Desheng,LI Bohua. Towards a new era of diversified energy development:Innovation in theoretical petroleum geology to meet“dual carbon target”[J]. Earth Science Frontiers,2022,29(6):1−9.

[2] 王贵玲,陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源,2022,31(3):412−425.

WANG Guiling,LU Chuan. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources,2022,31(3):412−425.

[3] 覃兰丽. 关中盆地地下热水水化学特征及其形成机制研究[D]. 西安:长安大学,2008.

QIN Lanli. Study on the hydrochemical characteristics of geothermal water and its formation in Guanzhong Basin[D]. Xi’an:Chang’an University,2008.

[4] 马致远,范基娇,牛光亮,等. 关中地区地下热水的分类[J]. 煤田地质与勘探,2005,33(5):54−57.

MA Zhiyuan,FAN Jijiao,NIU Guangliang,et al. Classification of thermal water in Guanzhong area,Shaanxi Province[J]. Coal Geology & Exploration,2005,33(5):54−57.

[5] 孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京:中国地质大学(北京),2015.

SUN Hongli. The bearing features and genetic model for geothermal resources in Guanzhong Basin[D]. Beijing:China University of Geosciences (Beijing),2015.

[6] 黄建军,周阳,滕宏泉,等. 关中盆地西安凹陷地热水赋存特征及其资源量估算[J]. 西北地质,2021,54(1):196−203.

HUANG Jianjun,ZHOU Yang,TENG Hongquan,et al. On the occurrence characteristics and the estimation of geothermal water in Xi’an Sag,Guanzhong Basin[J]. Northwestern Geology,2021,54(1):196−203.

[7] 余娟. 咸阳地压型热储流体基本特征及补给的研究[D]. 西安:长安大学,2009.

YU Juan. The study on the basic characteristics and recharge of geopressured geothermal waters in Xianyang[D]. Xi’an:Chang’an University,2009.

[8] 何丹. 关中盆地深部残存沉积水的同位素水文地球化学证据[D]. 西安:长安大学,2015.

HE Dan. Isotopic and hydrogeochemical evidence of remaining sedimentary water in the deep geothermal reservoir of Guanzhong Basin[D]. Xi’an:Chang’an University,2015.

[9] 苏艳. 关中盆地中部地压型地热流体环境同位素水文地球化学特征研究[D]. 西安:长安大学,2008.

SU Yan. Study of isotopic and hydrochemical features of geothermal waters in the central Guanzhong Basin[D]. Xi’an:Chang’an University,2008.

[10] 马致远,余娟,李清,等. 关中盆地地下热水环境同位素分布及其水文地质意义[J]. 地球科学与环境学报,2008,30(4):396−401.

MA Zhiyuan,YU Juan,LI Qing,et al. Environmental isotope distribution and hydrologic geologic sense of Guanzhong Basin geothermal water[J]. Journal of Earth Sciences and Environment,2008,30(4):396−401.

[11] 罗璐,朱霞,何春艳,等. 陕西咸阳地热田地热流体成因研究[J]. 地质论评,2019,65(6):1422−1430.

LUO Lu,ZHU Xia,HE Chunyan,et al. Study on the genesis of geothermal fluid in Xianyang geothermal field[J]. Geological Review,2019,65(6):1422−1430.

[12] 李修成,马致远,张雪莲,等. 陕西省关中盆地东大地热田成因机制分析[J]. 中国地质,2016,43(6):2082−2091.

LI Xiucheng,MA Zhiyuan,ZHANG Xuelian,et al. Genetic model of the Dongda geothermal field in Guanzhong Basin,Shaanxi Province[J]. Geology in China,2016,43(6):2082−2091.

[13] 刘建朝,李荣西,魏刚峰,等. 渭河盆地地热水水溶氦气成因与来源研究[J]. 地质科技情报,2009,28(6):84−88.

LIU Jianchao,LI Rongxi,WEI Gangfeng,et al. Origin and source of soluble helium gas in geothermal water,Weihe Basin[J]. Geological Science and Technology Information,2009,28(6):84−88.

[14] 李荣西,刘建朝,魏刚峰,等. 渭河盆地地热水水溶烃类天然气成因与来源研究[J]. 天然气地球科学,2009,20(5):774−780.

LI Rongxi,LIU Jianchao,WEI Gangfeng,et al. Origin and source of dissolved hydrocarbon gas in geothermal water,Weihe Basin[J]. Natural Gas Geoscience,2009,20(5):774−780.

[15] 任隽,冯希杰,王夫运,等. 深地震反射剖面揭示的渭河盆地西部宝鸡凸起断裂深部特征[J]. 国际地震动态,2012,36(6):86.

REN Jun,FENG Xijie,WANG Fuyun,et al. Deep seismic reflection profiles reveal deep features of Baoji uplift fault in western Weihe Basin[J]. Recent Developments in World Seismology,2012,36(6):86.

[16] 陶成,刘文汇,杨华敏,等. 天然气中稀有气体浓度与同位素比值联测技术及应用[J]. 质谱学报,2018,39(2):201−208.

TAO Cheng,LIU Wenhui,YANG Huamin,et al. Analysis of concentration and isotope ratio of noble gases in natural gas[J]. Journal of Chinese Mass Spectrometry Society,2018,39(2):201−208.

[17] GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749−2765.

[18] 王欣,漆继红,许模,等. Na–K–Mg三角图修正与Na–K温标选取[J]. 煤田地质与勘探,2019,47(2):121−128.

WANG Xin,QI Jihong,XU Mo,et al. Modification of Na–K–Mg triangular diagram and selection of Na–K geothermometer[J]. Coal Geology & Exploration,2019,47(2):121−128.

[19] 李建森,李廷伟,马海州,等. 柴达木盆地西部新近系和古近系油田卤水水化学特征及其地质意义[J]. 水文地质工程地质,2013,40(6):28−36.

LI Jiansen,LI Tingwei,MA Haizhou,et al. Investigation of the chemical characteristics and its geological significance of the Tertiary oilfield brine in the western Qaidam Basin[J]. Hydrogeology & Engineering Geology,2013,40(6):28−36.

[20] 马致远,李嘉祺,翟美静,等. 沉积型和火山型地热流体的同位素水文地球化学对比研究[J]. 水文地质工程地质,2019,46(6):9−18.

MA Zhiyuan,LI Jiaqi,ZHAI Meijing,et al. A comparative study of isotopic hydrogeochemistry of geothermal fluids of sedimentary basin type and volcanic type[J]. Hydrogeology & Engineering Geology,2019,46(6):9−18.

[21] 孙红丽,王贵玲,蔺文静. 西宁盆地地下热水的TDS分布特征及富集机理[J]. 地质科技通报,2022,41(1):278−287.

SUN Hongli,WANG Guiling,LIN Wenjing. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology,2022,41(1):278−287.

[22] 李佳洋,刘芳君,周自强,等. 咸阳地热田地热水水化学研究[J]. 当代化工,2022,51(9):2225−2230.

LI Jiayang,LIU Fangjun,ZHOU Ziqiang,et al. Study on hydrochemistry of geothermal field in Xianyang[J]. Contemporary Chemical Industry,2022,51(9):2225−2230.

[23] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science,1970,170(3962):1088−1090.

[24] GAILLARDET J,DUPRÉ B,LOUVAT P,et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology,1999,159(1/2/3/4):3−30.

[25] 王连生,郭占谦,马志红,等. 无机成因天然气的地球化学特征[J]. 吉林大学学报(地球科学版),2004,34(4):542−545.

WANG Liansheng,GUO Zhanqian,MA Zhihong,et al. Geochemistry characters of inorganic natural gas[J]. Journal of Jilin University (Earth Science Edition)),2004,34(4):542−545.

[26] 王万春,刘文汇,刘全有. 浅层混源天然气判识的碳同位素地球化学分析[J]. 天然气地球科学,2003,14(6):469−473.

WANG Wanchun,LIU Wenhui,LIU Quanyou. Analyses of the carbon isotopic geochemistry of the mix–sourced shallow reservoir natural gas identification[J]. Natural Gas Geoscience,2003,14(6):469−473.

[27] 戴金星. 各类烷烃气的鉴别[J]. 中国科学:B辑,1992(2):185–186.

DAI Jinxing. Identification of various hydrocarbon gases[J]. Science in China:Series B,1992(2):185–186.

[28] 徐永昌. 天然气中氦同位素分布及构造环境[J]. 地学前缘,1997,4(3/4):185−190.

XU Yongchang. Helium isotope distribution of natural gasses and its structural setting[J]. Earth Science Frontiers,1997,4(3/4):185−190.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.