•  
  •  
 

Coal Geology & Exploration

Authors

XIE Heping, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen 518060, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, ChinaFollow
CUI Pengfei, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen 518060, China
SHANG Delei, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen 518060, China
FAN Dong, CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China
CHEN Ling, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen 518060, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
YANG Mingqing, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen 518060, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
DU Lin, Shaanxi Linbei Coal Industry Development Co. Ltd., Baoji 721599, China
GAO Mingzhong, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen 518060, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, ChinaFollow

Abstract

The in-situ gas pressure and content of coal seams are critical for the safe production of deep coal mines and the accurate evaluation of coalbed methane resources. To address the technical challenges of accurately determining in-situ gas content in deep coal seams, this study proposed brand-new principles of in-situ pressure coring and the tests of in-situ gas content and pressure. It also derived a calculation method for in-situ gas content in coal seams and a method for determining the in-situ gas pressure while considering the effects of moisture content and multiple gas components. Given the in-situ stress environment deep in mines and the demand for multi-direction coring, this study introduced independently developed pressure-preserved controllers using gravity, elastic force, and magnetic force. The authors of this study also independently developed a set of technology and equipment that integrates low-disturbance pressure-preserved coring and the gas content tests of samples. This set of technology and equipment allows for in-situ sample transfer, pulverization, and tests that are integrated with the pressure-preserved coring device and can unlock the coring device. This avoids gas escape and loss during in-situ coring and sample transfer, thus significantly improving the accuracy of the gas content determination. This study provides theoretical and technical support for accurately determining in-situ gas pressure and content in deep coal seams, aiming to reduce gas accidents and enhance the mining efficiency of mines with high outburst risks.

Keywords

pressure-preserved coring, low-disturbance coring, in-situ gas content, in-situ gas pressure, integrated transfer and pulverization

DOI

10.12363/issn.1001-1986.23.02.0075

Reference

[1] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.

XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.

[2] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.

[3] 高明忠,叶思琪,杨本高,等. 深部原位岩石力学研究进展[J]. 中国科学基金,2021,35(6):895−903.

GAO Mingzhong,YE Siqi,YANG Bengao,et al. Progress in research on deep in situ rock mechanics[J]. Bulletin of National Natural Science Foundation of China,2021,35(6):895−903.

[4] 高明忠,刘军军,林文明,等. 特厚煤层超前采动原位应力演化规律研究[J]. 煤炭科学技术,2020,48(2):28−35.

GAO Mingzhong,LIU Junjun,LIN Wenming,et al. Study on in–situ stress evolution law of ultra–thick coal seam in advance mining[J]. Coal Science and Technology,2020,48(2):28−35.

[5] 周淑慧,王军,梁严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业,2021,41(2):171−182.

ZHOU Shuhui,WANG Jun,LIANG Yan. Development of China’s natural gas industry during the 14th Five–Year Plan in the background of carbon neutrality[J]. Natural Gas Industry,2021,41(2):171−182.

[6] 高明忠,陈领,凡东,等. 深部煤矿原位保压保瓦斯取芯原理与技术探索[J]. 煤炭学报,2021,46(3):885−897.

GAO Mingzhong,CHEN Ling,FAN Dong,et al. Principle and technology of coring with in–situ pressure and gas maintaining in deep coal mine[J]. Journal of China Coal Society,2021,46(3):885−897.

[7] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤层瓦斯含量井下直接测定方法:GB/T 23250—2009[S]. 北京:中国标准出版社,2009.

[8] 国家市场监督管理总局,中国国家标准化管理委员会. 煤层气含量测定方法:GB/T 19559—2021[S]. 北京:中国标准出版社,2021.

[9] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤层气含量测定加温解吸法:GB/T 28753—2012[S]. 北京:中国标准出版社,2012.

[10] DIAMOND W P,SCHATZEL S J. Measuring the gas content of coal:A review[J]. International Journal of Coal Geology,1998,35(1):311−331.

[11] 姜海纳,程远平,安丰华. 淮北矿区煤层瓦斯含量直接测定法中有效取样时间研究[J]. 采矿与安全工程学报,2013,30(1):143−148.

JIANG Haina,CHENG Yuanping,AN Fenghua. Research on effective sampling time in direct measurement of gas content in Huaibei coal seams[J]. Journal of Mining & Safety Engineering,2013,30(1):143−148.

[12] 周福宝,康建宏,王有湃,等. 煤层瓦斯含量井下一站式自动化精准测定方法[J]. 煤炭学报,2022,47(8):2873−2882.

ZHOU Fubao,KANG Jianhong,WANG Youpai,et al. Method of underground integrated automatic and accurate determination of coalbed gas content[J]. Journal of China Coal Society,2022,47(8):2873−2882.

[13] 王刚,谢军,段毅,等. 取碎屑状煤芯时的煤层瓦斯含量直接测定方法研究[J]. 采矿与安全工程学报,2013,30(4):610−615.

WANG Gang,XIE Jun,DUAN Yi,et al. Direct method of determining gas content of coal beds from clastic coal core[J]. Journal of Mining & Safety Engineering,2013,30(4):610−615.

[14] 陈向军,王兆丰,王林. 取样过程中损失瓦斯量推算模型研究[J]. 煤矿安全,2013,44(9):31−33.

CHEN Xiangjun,WANG Zhaofeng,WANG Lin. Research on gas loss quantity prediction model in sampling process[J]. Safety in Coal Mines,2013,44(9):31−33.

[15] LI Zenghua,QI Qiangqiang,YANG Yongliang,et al. Factors impacting gas content measurements using gas desorption by drilling underground boreholes[J]. Adsorption Science & Technology,2016,34(7/8):488−505.

[16] 温志辉,张宏图,魏建平,等. 负压定点取样煤层瓦斯含量测定损失量推算方法[J]. 中国矿业大学学报,2017,46(4):776−782.

WEN Zhihui,ZHANG Hongtu,WEI Jianping,et al. Gas loss calculation method for gas content determination by sampling method based on negative pressure pneumatic conveying[J]. Journal of China University of Mining & Technology,2017,46(4):776−782.

[17] 杨明清,刘杰,任收麦,等. 岩石解吸气测定仪在页岩气勘探中的应用[J]. 中国石油勘探,2016,21(6):120−124.

YANG Mingqing,LIU Jie,REN Shoumai,et al. Application of rock desorbed gas determinator in shale gas exploration[J]. China Petroleum Exploration,2016,21(6):120−124.

[18] 王玉杰,徐喜庆,邹昊辰,等. 煤层气含气量测定仪的研制[J]. 西部探矿工程,2016,28(11):15−16.

WANG Yujie,XU Xiqing,ZOU Haochen,et al. Development of the instrument for measuring the gas content of coalbed methane[J]. West–China Exploration Engineering,2016,28(11):15−16.

[19] 张宪尚,隆清明,吕贵春,等. 瓦斯含量快速测定技术应用研究[J]. 工业安全与环保,2017,43(11):38−40.

ZHANG Xianshang,LONG Qingming,LYU Guichun,et al. The application research on the rapid determination technology for gas content[J]. Industrial Safety and Environmental Protection,2017,43(11):38−40.

[20] 隆清明,夏永军,牟景珊,等. 瓦斯含量快速测定技术[J]. 矿业安全与环保,2013,40(5):56−58.

LONG Qingming,XIA Yongjun,MOU Jingshan,et al. Research on quick measurement technique of gas content[J]. Mining Safety & Environmental Protection,2013,40(5):56−58.

[21] 杨昌光,缑发现,贾翠芝. 用风力排渣采样方法测定煤层瓦斯含量[J]. 煤矿安全,2000(2):15−17.

YANG Changguang,GOU Faxian,JIA Cuizhi. Determination of coal seam gas content by sampling method of wind slagging[J]. Safety in Coal Mines,2000(2):15−17.

[22] 陈雄,胡杰. 不同取样方式对煤层瓦斯含量测定的研究分析[J]. 工业安全与环保,2017,43(2):15−17.

CHEN Xiong,HU Jie. The research on determination of coal seam gas content based on different sampling modes[J]. Industrial Safety and Environmental Protection,2017,43(2):15−17.

[23] 文光才,刘胜,邹银辉,等. 钻孔引射取样装置:CN201321859Y[P]. 2009-10-07.

[24] 张丁亮. 煤矿井下煤层密闭取心装置[J]. 中国煤炭地质,2015,27(7):80−81.

ZHANG Dingliang. Study on coal seam airtight coring facility in coalmines[J]. Coal Geology of China,2015,27(7):80−81.

[25] 陈绍杰,徐阿猛,陈学习,等. 反转密封取样装置[J]. 煤矿安全,2012,43(10):94−96.

CHEN Shaojie,XU Ameng,CHEN Xuexi,et al. Inversion seal sampling device[J]. Safety in Coal Mines,2012,43(10):94−96.

[26] 孙四清,张群,龙威成,等. 煤矿井下长钻孔煤层瓦斯含量精准测试技术及装置[J]. 煤田地质与勘探,2019,47(4):1−5.

SUN Siqing,ZHANG Qun,LONG Weicheng,et al. Accurate test technology and device for coal seam gas content in long boreholes in underground coal mines[J]. Coal Geology & Exploration,2019,47(4):1−5.

[27] 孙四清,张群,郑凯歌,等. 地面井煤层气含量精准测试密闭取心技术及设备[J]. 煤炭学报,2020,45(7):2523−2530.

SUN Siqing,ZHANG Qun,ZHENG Kaige,et al. Technology and equipment of sealed coring for accurate determination of coalbed gas content in ground well[J]. Journal of China Coal Society,2020,45(7):2523−2530.

[28] 国家安全生产监督管理总局. 煤矿井下煤层瓦斯压力的直接测定方法:AQ/T 1047—2007[S]. 北京:中国标准出版社,2007.

[29] 杨洋,蒋承林,何明霞. 近距离煤层群条件下穿煤层瓦斯压力测定技术[J]. 煤炭科学技术,2011,39(2):51−54.

YANG Yang,JIANG Chenglin,HE Mingxia. Gas pressure measuring technology with borehole through seams in close distance seam group[J]. Coal Science and Technology,2011,39(2):51−54.

[30] 王法凯,蒋承林,公衍伟,等. 基于M–Ⅱ型瓦斯压力测定仪+套管法的穿多煤层测定瓦斯压力技术[J]. 工矿自动化,2011,37(3):1−5.

WANG Fakai,JIANG Chenglin,GONG Yanwei,et al. Technology of detecting gas pressure by puncturing multi–seam based on M−Ⅱ gas pressure detector and casing method[J]. Industry and Mine Automation,2011,37(3):1−5.

[31] 覃佐亚,蒋承林,李光,等. 上行超长孔瓦斯压力测定方法的研究与应用[J]. 煤炭技术,2012,31(5):83−84.

QIN Zuoya,JIANG Chenglin,LI Guang,et al. Research and application of method of gas pressure measurement with upturned–long distance holes[J]. Coal Technology,2012,31(5):83−84.

[32] 蒋承林,王智立,崔正中,等. 下行超深钻孔快速测定煤层瓦斯压力技术[J]. 中国煤炭,2014,40(5):114−117.

JIANG Chenglin,WANG Zhili,CUI Zhengzhong,et al. Fast gas measuring technique for downward ultra deep boreholes[J]. China Coal,2014,40(5):114−117.

[33] 赵发军,温志辉,刘明举,等. 分析组分对间接法测定煤层瓦斯压力的影响[J]. 煤炭科学技术,2010,38(4):52−54.

ZHAO Fajun,WEN Zhihui,LIU Mingju,et al. Analysis content affected to seam gas pressure measured with indirect method[J]. Coal Science and Technology,2010,38(4):52−54.

[34] 陈爱和,胡云强,刘军. 气体分压定律在确定瓦斯压力中的应用[J]. 煤矿安全,2014,45(3):153−155.

CHEN Aihe,HU Yunqiang,LIU Jun. Application of gas partial pressure law in determining gas pressure[J]. Safety in Coal Mines,2014,45(3):153−155.

[35] 张占存. 压力恢复曲线测定煤层瓦斯赋存参数的试验研究[J]. 煤炭学报,2012,37(8):1310−1314.

ZHANG Zhancun. Experimental research on applying pressure build–up curves to determine the gas occurrence parameters of coal seam[J]. Journal of China Coal Society,2012,37(8):1310−1314.

[36] WANG Hao,WANG Enyuan,LI Zhonghui,et al. Study and application of a new gas pressure inversion model in coal seam while drilling based on directional drilling technology[J]. Fuel,2021,306:121679.

[37] SI Leilei,LI Zenghua,XUE Dingzhi,et al. Modeling and application of gas pressure measurement in water–saturated coal seam based on methane solubility[J]. Transport in Porous Media,2017,119(1):163−179.

[38] 傅雪海,张小东,韦重韬. 煤层含气量的测试、模拟与预测研究进展[J]. 中国矿业大学学报,2021,50(1):13−31.

FU Xuehai,ZHANG Xiaodong,WEI Chongtao. Review of research on testing,simulation and prediction of coalbed methane content[J]. Journal of China University of Mining & Technology,2021,50(1):13−31.

[39] 崔永杰,王兆丰,范道鹏. 免封孔煤层瓦斯压力测定技术可行性研究[J]. 煤矿安全,2021,52(11):22−27.

CUI Yongjie,WANG Zhaofeng,FAN Daopeng. Feasibility study on gas pressure measurement technology of coal seam without sealing hole[J]. Safety in Coal Mines,2021,52(11):22−27.

[40] SCOTT A R. Hydrogeologic factors affecting gas content distribution in coal beds[J]. International Journal of Coal Geology,2002,50(1/2/3/4):363–387.

[41] 冯三利,胡爱梅,霍永忠,等. 美国低阶煤煤层气资源勘探开发新进展[J]. 天然气工业,2003,23(2):124−126.

FENG Sanli,HU Aimei,HUO Yongzhong,et al. New progress in exploration and development of low rank coal bed methane resources in the United States[J]. Natural Gas Industry,2003,23(2):124−126.

[42] 谢和平,高明忠,张茹,等. 深部岩石原位“五保”取芯构想与研究进展[J]. 岩石力学与工程学报,2020,39(5):865−876.

XIE Heping,GAO Mingzhong,ZHANG Ru,et al. Study on concept and progress of in situ fidelity coring of deep rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(5):865−876.

[43] ZHANG Lintong,CHU Jixun,LI Na. Application and implementation of steinmetz solid[J]. Journal of Physics:Conference Series,2019,1345(4):042093.

[44] XIE Heping,LIU Tao,GAO Mingzhong,et al. Research on in–situ condition preserved coring and testing systems[J]. Petroleum Science,2021,18(6):1840−1859.

[45] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 地勘时期煤层瓦斯含量测定方法:GB/T 23249—2009[S]. 北京:中国标准出版社,2009.

[46] 谢和平,尚德磊,高明忠,等. 保压保瓦斯取芯器与高压管安全卸压及密封引流转接管套:CN202210110372. 4[P]. 2022-04-26.

[47] FANG Huihuang,SANG Shuxun,LIU Shiqi. Establishment of dynamic permeability model of coal reservoir and its numerical simulation during the CO2–ECBM process[J]. Journal of Petroleum Science and Engineering,2019,179:885−898.

[48] 吴金生,黄晓林,蒋炳,等. 水平绳索随钻定向钻进技术研究与应用[J]. 煤田地质与勘探,2021,49(5):260−264.

WU Jinsheng,HUANG Xiaolin,JIANG Bing,et al. Research and application of horizontal wire–line directional deviation correction while drilling[J]. Coal Geology & Exploration,2021,49(5):260−264.

[49] 周云,张绍和. 浅孔复杂地层φ110型绳索取心钻具的研制与应用[J]. 煤田地质与勘探,2017,45(4):163−169.

ZHOU Yun,ZHANG Shaohe. Research and application of wire–line coring drilling tools for shallow hole in heterogeneous layers[J]. Coal Geology & Exploration,2017,45(4):163−169.

[50] 徐涛. 水平定向钻进随钻测量方法及定位技术研究[D]. 长沙:国防科学技术大学,2006.

XU Tao. Research on MWD surveying method and locating technique of horizontal directional drilling[D]. Changsha:National University of Defense Technology,2006.

[51] 王家豪,董浩斌,石智军,等. 煤矿井下随钻测量电磁传输信道建模[J]. 煤炭学报,2015,40(7):1705−1710.

WANG Jiahao,DONG Haobin,SHI Zhijun,et al. Modeling an EM channel for MWD in underground coal mine[J]. Journal of China Coal Society,2015,40(7):1705−1710.

[52] 高珺,李泉新,陈龙,等. 煤矿井下随钻测量数据声波传输系统[J]. 煤炭学报,2020,45(7):2507−2512.

GAO Jun,LI Quanxin,CHEN Long,et al. Acoustic transmission system of measurement data while drilling in underground coal mine[J]. Journal of China Coal Society,2020,45(7):2507−2512.

[53] 高珺. 煤矿井下钻孔深度检测技术研究[J]. 煤炭科学技术,2016,44(4):106−109.

GAO Jun. Study on drilling depth detection technology of underground coal mine[J]. Coal Science and Technology,2016,44(4):106−109.

[54] 孔祥旺,张绍和,王文彬,等. 湘西北复杂构造区破碎地层绳索取心钻进技术难点及优化[J]. 煤田地质与勘探,2021,49(2):247−252.

KONG Xiangwang,ZHANG Shaohe,WANG Wenbin,et al. Difficulties and optimization of wire–line core drilling technology for broken formation in complex structure area of northwest Hunan[J]. Coal Geology & Exploration,2021,49(2):247−252.

[55] 韩毅,张绍和,白锐,等. 囊袋多节捆绑式绳索取心钻具的设计与应用[J]. 煤田地质与勘探,2019,47(5):220−224.

HAN Yi,ZHANG Shaohe,BAI Rui,et al. Design and application of multi−section bundled bag wire−line coring drilling tools[J]. Coal Geology & Exploration,2019,47(5):220−224.

[56] 廖远苏,胡啟锋. 一种隔水隔卡的自锁式绳索取心钻具及应用[J]. 煤田地质与勘探,2021,49(4):278−286.

LIAO Yuansu,HU Qifeng. Introductions and applications of a self–locking wire–line coring system with a water–shielding bit and a circlip–shielded core barrel[J]. Coal Geology & Exploration,2021,49(4):278−286.

[57] 邓楠. 煤层瓦斯含量直接测定取样技术研究进展[J]. 矿业安全与环保,2021,48(4):113−117.

DENG Nan. Research status on direct measurement and sampling technology for coal seam gas content[J]. Mining Safety & Environmental Protection,2021,48(4):113−117.

[58] 程波,乔伟,颜文学,等. 煤矿井下煤层瓦斯含量测定方法的研究进展[J]. 矿业安全与环保,2019,46(4):98−103.

CHENG Bo,QIAO Wei,YAN Wenxue,et al. Research progress on determination method of coal seam gas content in coal mine[J]. Mining Safety & Environmental Protection,2019,46(4):98−103.

[59] ZHAO Wei,WANG Kai,JU Yang,et al. Influence of the roadway exposure time on the accuracy of gas content measurements in reconstructed and extended mines[J]. Process Safety and Environmental Protection,2020,142:109−117.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.