•  
  •  
 

Coal Geology & Exploration

Abstract

Deep coal mining in China is seriously restricted by factors including high stress, high gas pressure, and low coal seam permeability. Moreover, with the gradual deterioration of the mining conditions of deep coal seams, it is increasingly difficult to control the gas in these coal seams. Fortunately, the pressure-relief mining of protective layers serves as an efficient way to control gas and eliminate coal and gas outbursts. To meet the demand of practical projects, this paper reviews the studies on the mining technology for protective layers, the law of change in the stress of protected layers, the evolutionary law of the fracture system, the evolutionary law of permeability, and pressure-relief gas extraction technology of protected layers conducted in China in recent years. After summarizing and exploring the shortcomings in studies on the pressure-relief mining of protective layers, it is discovered out that small attention is paid to the pressure-relief effect of coals in the upper protected layers at an ultra-long distance within a bending subsidence zone, failing to meet the demand of practical projects. Based on the deformation characteristics of coals in the upper protected layers at an ultra-long distance during the pressure-relief mining of protective layers, as well as the opening and closing of transverse fractures in the coals, this study proposes the concept "time window" for pressure-relief mining of protective layers. Meanwhile, it points out that the important directions for the control of pressure-relief gas in the protected layers at an ultralong distance in the future include establishing the spatial-temporal relationships between the mining of protective layers and the evolution of the gas flow in protected layers, constructing the identification model for the "time window " of gas extraction, and building a spatial-temporal coordination pattern for the pressure-relief mining of protective layers and the control of gas in the upper protected layers at and ultralong distance. Finally, this study develops a method of pressure relief gas extraction from the upper protected layers using directional long-distance drilling and verifies the performance of the method in the Pingdingshan mining area, Henan Province.

Keywords

pressure-relief mining, protected layer, transverse fracture, time window, gas extraction

DOI

10.12363/issn.1001-1986.22.11.0894

Reference

[1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.

YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.

[2] 方佳伟,韩保山,周加佳,等. 基于工作面全覆盖的地面瓦斯高效抽采模式研究[J]. 煤田地质与勘探,2020,48(3):81−85.

FANG Jiawei,HAN Baoshan,ZHOU Jiajia,et al. Surface efficient gas extraction mode based on full coverage of working face[J]. Coal Geology & Exploration,2020,48(3):81−85.

[3] 周福宝,孙玉宁,李海鉴,等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报,2016,45(3):433−439.

ZHOU Fubao,SUN Yuning,LI Haijian,et al. Research on the theoretical model and engineering technology of the coal seam gas drainage hole sealing[J]. Journal of China University of Mining and Technology,2016,45(3):433−439.

[4] 陈月霞,褚廷湘,陈鹏,等. 瓦斯抽采钻孔间距优化三维数值模拟量化研究[J]. 煤田地质与勘探,2021,49(3):78−84.

CHEN Yuexia,CHU Tingxiang,CHEN Peng,et al. Quantitative study of 3D numerical simulation on optimizing borehole layout spacing of gas drainage[J]. Coal Geology & Exploration,2021,49(3):78−84.

[5] 张建国. 深部高瓦斯低渗透性煤层协同开采关键技术研究[J]. 煤炭科学技术,2020,48(9):66−74.

ZHANG Jianguo. Study on key technologies of collaborative mining in deep coal seam with high gas and low permeability[J]. Coal Science and Technology,2020,48(9):66−74.

[6] 程详,赵光明,孟祥瑞,等. 深部低渗透强突出煤层群首采下保护层确定和效果考察[J]. 中国安全生产科学技术,2016,12(10):18−23.

CHENG Xiang,ZHAO Guangming,MENG Xiangrui,et al. Determination and effect investigation on the first mining lower protective layer in deep coal seam group with low permeability and strong outburst[J]. Journal of Safety Science and Technology,2016,12(10):18−23.

[7] 孙可明,田森. 开采保护层覆岩裂隙演化规律模拟[J]. 辽宁工程技术大学学报(自然科学版),2017,36(2):122−126.

SUN Keming,TIAN Sen. Simulation study on fracture evolution law of overlying strata when mining protective layer[J]. Journal of Liaoning Technical University(Natural Science),2017,36(2):122−126.

[8] 杨永波,周哲. 分级循环荷载下保护层开采扰动煤岩强度及裂隙特性研究[J]. 浙江大学学报(工学版),2022,56(12):2445−2453.

YANG Yongbo,ZHOU Zhe. Strength and fracture characteristics of coal rock disturbed by protective layer mining under graded cyclic loading[J]. Journal of Zhejiang University(Engineering Science),2022,56(12):2445−2453.

[9] JIN Kan,CHENG Yuanping,WANG Wei,et al. Evaluation of the remote lower protective seam mining for coal mine gas control:A typical case study from the Zhuxianzhuang Coal Mine,Huaibei Coalfield,China[J]. Journal of Natural Gas Science & Engineering,2016,33:44−55.

[10] 王中华,曹建军. 深部远距离煤层群卸压主控因素及首采层优选方法研究[J]. 煤炭科学技术,2021,49(8):154−161.

WANG Zhonghua,CAO Jianjun. Study on main control factors of pressure relief of deep and long–distance coal seams group and optimization method of initial mining[J]. Coal Science and Technology,2021,49(8):154−161.

[11] 刘洪永,程远平,赵长春,等. 保护层的分类及判定方法研究[J]. 采矿与安全工程学报,2010,27(4):468−474.

LIU Hongyong,CHENG Yuanping,ZHAO Changchun,et al. Classification and judgment method of the protective layers[J]. Journal of Mining and Safety Engineering,2010,27(4):468−474.

[12] 胡国忠,王宏图,袁志刚. 保护层开采保护范围的极限瓦斯压力判别准则[J]. 煤炭学报,2010,35(7):1131−1136.

HU Guozhong,WANG Hongtu,YUAN Zhigang. Discrimination criterion of ultimate gas pressure of protection region for exploiting protective layer[J]. Journal of China Coal Society,2010,35(7):1131−1136.

[13] WANG Haifeng,CHENG Yuanping,YUAN Liang. Gas outburst disasters and the mining technology of key protective seam in coal seam group in the Huainan Coalfield[J]. Natural Hazards,2013,67(2):763−782.

[14] CHEN Haidong,CHENG Yuanping,ZHOU Hongxing,et al. Damage and permeability development in coal during unloading[J]. Rock Mechanics & Rock Engineering,2013,46(6):1377−1390.

[15] 程远平,俞启香,袁亮,等. 煤与远程卸压瓦斯安全高效共采试验研究[J]. 中国矿业大学学报,2004,33(2):132−136.

CHENG Yuanping,YU Qixiang,YUAN Liang,et al. Experimental research of safe and high–efficient exploitation of coal and pressure relief gas in long distance[J]. Journal of China University of Mining and Technology,2004,33(2):132−136.

[16] 王海锋. 采场下伏煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用[D]. 徐州:中国矿业大学,2008.

WANG Haifeng. Pressure relief functional principle of stope underlying coal–rock mass and application in gas extraction of protected coal seam[D]. Xuzhou:China University of Mining and Technology,2008.

[17] ZHANG Jixiong,ZHANG Qiang,SPEARING A J S,et al. Green coal mining technique integrating mining–dressing–gas draining–backfilling–mining[J]. International Journal of Mining Science and Technology,2017,27(1):17−27.

[18] XUE Yi,GAO Feng,GAO Yanan,et al. Quantitative evaluation of stress–relief and permeability–increasing effects of overlying coal seams for coal mine methane drainage in Wulan Coal Mine[J]. Journal of Natural Gas Science & Engineering,2016,32:122−137.

[19] 沈荣喜,王恩元,刘贞堂,等. 近距离下保护层开采防冲机理及技术研究[J]. 煤炭学报,2011,36(增刊1):63−67.

SHEN Rongxi,WANG Enyuan,LIU Zhentang,et al. Rockburst prevention mechanism and technique of close–distance lower protective seam mining[J]. Journal of China Coal Society,2011,36(Sup.1):63−67.

[20] 王志强,冯锐敏,高运,等. 突出煤层实现连续卸压的倾斜近距下保护层开采技术研究[J]. 岩石力学与工程学报,2013,32(增刊2):3795−3803.

WANG Zhiqiang,FENG Ruimin,GAO Yun,et al. Research on mining technology of nether protective seam in inclined contiguous seams with continuous pressure–relief on outburst coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup.2):3795−3803.

[21] 程远平,周德永,俞启香,等. 保护层卸压瓦斯抽采及涌出规律研究[J]. 采矿与安全工程学报,2006,23(1):12−18.

CHENG Yuanping,ZHOU Deyong,YU Qixiang,et al. Research on extraction and emission laws of gas for pressure–relief in protecting coal seams[J]. Journal of Mining and Safety Engineering,2006,23(1):12−18.

[22] 袁亮,薛俊华,张农,等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望[J]. 煤炭科学技术,2013,41(9):6−11.

YUAN Liang,XUE Junhua,ZHANG Nong,et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining[J]. Coal Science and Technology,2013,41(9):6−11.

[23] 柴敬,刘永亮,王梓旭,等. 保护层开采下伏煤岩卸压效应及其光纤监测[J]. 煤炭学报,2022,47(8):2896−2906.

CHAI Jing,LIU Yongliang,WANG Zixu,et al. Pressure relief effect of protective layer mining and its optical fiber monitoring[J]. Journal of China Coal Society,2022,47(8):2896−2906.

[24] KONG Shengli,CHENG Yuanping,REN Ting,et al. A sequential approach to control gas for the extraction of multi–gassy coal seams from traditional gas well drainage to mining–induced stress relief[J]. Applied Energy,2014,131(9):67−78.

[25] 徐刚,王磊,金洪伟,等. 上保护层开采对下部特厚煤层移动变形规律及保护效果考察研究[J]. 中国安全生产科学技术,2019,15(6):36−41.

XU Gang,WANG Lei,JIN Hongwei,et al. Study on movement deformation laws and protection effect of lower ultra–thick coal seam affected by upper protective layer mining[J]. Journal of Safety Science and Technology,2019,15(6):36−41.

[26] XIONG Zuqiang,WANG Cheng,ZHANG Nianchao,et al. A field investigation for overlying strata behaviour study during protective seam long wall over mining[J]. Arabian Journal of Geosciences,2015,8(10):7797−7809.

[27] YANG Wei,LIN Baiquan,QU Yongan,et al. Mechanism of strata deformation under protective seam and its application for relieved methane control[J]. International Journal of Coal Geology,2011,85(3/4):300−306.

[28] 卢守青,程远平,王海锋,等. 红菱煤矿上保护层最小开采厚度的数值模拟[J]. 煤炭学报,2012,37(增刊1):43−47.

LU Shouqing,CHENG Yuanping,WANG Haifeng,et al. Numerical simulation research on the Hongling Coal Mine’s minimum mining thickness of upper protective layer[J]. Journal of China Coal Society,2012,37(Sup.1):43−47.

[29] 吕祥锋,王振伟,王爱文. 深部煤岩体保护层开采上覆岩层应力释放与转移特征的实验研究[J]. 实验力学,2013,28(3):340−346.

LYU Xiangfeng,WANG Zhenwei,WANG Aiwen. Experimental study of stress release and transfer characteristics of overburden rock stratum in coal seam group protective layer mining[J]. Journal of Experimental Mechanics,2013,28(3):340−346.

[30] 任伟光,周宏伟,薛东杰,等. 上保护层开采下煤岩强扰动力学行为与渗透特性[J]. 煤炭学报,2019,44(5):1473−1481.

REN Weiguang,ZHOU Hongwei,XUE Dongjie,et al. Mechanical behavior and permeability of coal and rock under strong mining disturbance in protected coal seam mining[J]. Journal of China Coal Society,2019,44(5):1473−1481.

[31] 涂敏,缪协兴,黄乃斌. 远程下保护层开采被保护煤层变形规律研究[J]. 采矿与安全工程学报,2006,23(3):253−257.

TU Min,MIAO Xiexing,HUANG Naibin. Deformation rule of protected coal seam exploited by using the long–distance–lower protective seam method[J]. Journal of Mining and Safety Engineering,2006,23(3):253−257.

[32] 石必明,刘泽功. 保护层开采上覆煤层变形特性数值模拟[J]. 煤炭学报,2008,33(1):17−22.

SHI Biming,LIU Zegong. Numerical simulation of the upper coal and rock deformation characteristic caused by mining protecting stratum[J]. Journal of China Coal Society,2008,33(1):17−22.

[33] 王浩,赵毅鑫,焦振华,等. 复合动力灾害危险下被保护层回采巷道位置优化[J]. 采矿与安全工程学报,2017,34(6):1060−1066.

WANG Hao,ZHAO Yixin,JIAO Zhenhua,et al. Optimization of the roadway location in protected seam with composite dynamic hazards[J]. Journal of Mining and Safety Engineering,2017,34(6):1060−1066.

[34] 李圣伟,高明忠,谢晶,等. 保护层开采卸压增透效应及其定量表征方法研究[J]. 四川大学学报(工程科学版),2016,48(增刊1):1−7.

LI Shengwei,GAO Mingzhong,XIE Jing,et al. Study on the effect of pressure relief and permeability enhancement in protected coal seam mining and its quantitative characterization method[J]. Journal of Sichuan University (Engineering Science Edition),2016,48(Sup.1):1−7.

[35] 王海锋,程远平,侯少杰,等. 倾斜煤层远距离上被保护层连续卸压保护技术研究及应用[J]. 采矿与安全工程学报,2010,27(2):210−214.

WANG Haifeng,CHENG Yuanping,HOU Shaojie,et al. Application of continuously pressure−relieving technology on long–distance upper protected seam of inclined coal seam[J]. Journal of Mining and Safety Engineering,2010,27(2):210−214.

[36] 王海锋,程远平,刘桂建,等. 被保护层保护范围的扩界及连续开采技术研究[J]. 采矿与安全工程学报,2013,30(4):595−599.

WANG Haifeng,CHENG Yuanping,LIU Guijian,et al. Range extender of protection and continuous mining technology of protected seam[J]. Journal of Mining and Safety Engineering,2013,30(4):595−599.

[37] 马建宏. 单一高瓦斯厚煤层下保护层开采卸压特性及瓦斯运移规律研究[D]. 焦作:河南理工大学,2016.

MA Jianhong. Research on pressure relief features and gas migration regularity of single thick coal seam under condition of lower protective layer mining[D]. Jiaozuo:Henan Polytechnic University,2016.

[38] 滕桂荣,谭云亮,高明. 基于Lattice Boltzmann方法对裂隙煤体中瓦斯运移规律的模拟研究[J]. 岩石力学与工程学报,2007,26(增刊1):3503−3508.

TENG Guirong,TAN Yunliang,GAO Ming. Simulation of gas seepage in fissured coal based on Lattice Boltzmann method[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(Sup.1):3503−3508.

[39] 任建业,李雨成,张欢,等. 单裂隙结构特征对煤岩体内瓦斯流动特性的影响[J/OL]. 采矿与安全工程学报,2022:1–12 [2023-02-23]. http://kns. cnki. net/kcms/detail/32. 1760. td. 20220825. 1341. 002. html.

REN Jianye,LI Yucheng,ZHANG Huan,et al. Effect of single fracture geometrical feature on methane flow behavior through coal-rock mass[J/OL]. Journal of Mining and Safety Engineering,2022:1–12 [2023-02-23]. http://kns. cnki. net/kcms/detail/32. 1760. td. 20220825. 1341. 002. html.

[40] 张东明,齐消寒,宋润权,等. 采动裂隙煤岩体应力与瓦斯流动的耦合机理[J]. 煤炭学报,2015,40(4):774−780.

ZHANG Dongming,QI Xiaohan,SONG Runquan,et al. Coupling mechanism of rock mass stress and gas flow in coal mining fissures[J]. Journal of China Coal Society,2015,40(4):774−780.

[41] 王伟,程远平,袁亮,等. 深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J]. 煤炭学报,2016,41(1):138−148.

WANG Wei,CHENG Yuanping,YUAN Liang,et al. Floor fracture evolution and relief gas drainage timeliness in deeper underground short–distance upper protective coal seam extraction[J]. Journal of China Coal Society,2016,41(1):138−148.

[42] 刘三钧,林柏泉,高杰,等. 远距离下保护层开采上覆煤岩裂隙变形相似模拟[J]. 采矿与安全工程学报,2011,28(1):51−55.

LIU Sanjun,LIN Baiquan,GAO Jie,et al. Similar simulation of fracture deformation in overlying coal and rock in far–distance–lower–protective–layer mining[J]. Journal of Mining and Safety Engineering,2011,28(1):51−55.

[43] 贺爱萍,付华,霍丙杰,等. 保护层开采被保护层裂隙分布与增透效果相似材料模拟[J]. 安全与环境学报,2019,19(4):1174−1181.

HE Aiping,FU Hua,HUO Bingjie,et al. Simulated study for the crack distribution and the antireflection effect with the mining of the protective layer[J]. Journal of Safety and Environment,2019,19(4):1174−1181.

[44] 杨科,刘帅. 深部远距离下保护层开采多关键层运移–裂隙演化–瓦斯涌出动态规律研究[J]. 采矿与安全工程学报,2020,37(5):991−1000.

YANG Ke,LIU Shuai. Rule of multi–key strata movement–fracture evolution–dynamics of gas emission in deep long distance lower protective layer mining[J]. Journal of Mining & Safety Engineering,2020,37(5):991−1000.

[45] 焦振华,陶广美,王浩,等. 晋城矿区下保护层开采覆岩运移及裂隙演化规律研究[J]. 采矿与安全工程学报,2017,34(1):85−90.

JIAO Zhenhua,TAO Guangmei,WANG Hao,et al. Overburden strata movement and fissure evolution in lower protective layer in Jincheng Mining District[J]. Journal of Mining & Safety Engineering,2017,34(1):85−90.

[46] 刘洪永,程远平,赵长春,等. 采动煤岩体弹脆塑性损伤本构模型及应用[J]. 岩石力学与工程学报,2010,29(2):358−365.

LIU Hongyong,CHENG Yuanping,ZHAO Changchun,et al. Constitutive model for elasto–brittle–plastic damage of coal rock mass due to mining and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):358−365.

[47] 李福胜,张春雷,张勇. 地质雷达探测底板破坏深度的数值模拟研究[J]. 中国煤炭,2013,39(11):51−54.

LI Fusheng,ZHANG Chunlei,ZHANG Yong. Numerical simulation research on damage depth of floor based on GPR detection[J]. China Coal,2013,39(11):51−54.

[48] 张春雷. 煤层群上行开采层间裂隙演化及卸压空间效应[D]. 北京:中国矿业大学(北京),2017.

ZHANG Chunlei. Fracture development and stress relief with space influenced by mining of coal seams group[D]. Beijing:China University of Mining and Technology (Beijing),2017.

[49] 路洁心. 远距离下保护层采动卸压及地面井失稳变形研究[D]. 徐州:中国矿业大学,2015.

LU Jiexin. Study on pressure–relief in the remote lower protective layer and instability of surface borehole under mining[D]. Xuzhou:China University of Mining and Technology,2015.

[50] 霍丙杰,范张磊,路洋波,等. 保护层开采被保护层体积应变与渗透特性相似模拟研究[J]. 煤炭科学技术,2018,46(7):19−25.

HUO Bingjie,FAN Zhanglei,LU Yangbo,et al. Similarity simulation study on permeability of protected coal seam volumetric strain during mining protective coal seam[J]. Coal Science and Technology,2018,46(7):19−25.

[51] LIU Haibo,LIU Hong,CHENG Yuanping. The elimination of coal and gas outburst disasters by ultrathin protective seam drilling combined with stress–relief gas drainage in Xinggong Coalfield[J]. Journal of Natural Gas Science & Engineering,2014,21:837−844.

[52] 孙培德. 变形过程中煤样渗透率变化规律的实验研究[J]. 岩石力学与工程学报,2001,20(增刊1):1801−1804.

SUN Peide. Testing study on coal specimen permeability during solid deformation process[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(Sup.1):1801−1804.

[53] YIN Guangzhi,LI Minghui,WANG J G,et al. Mechanical behavior and permeability evolution of gas infiltrated coals during protective layer mining[J]. International Journal of Rock Mechanics & Mining Sciences,2015,80:292−301.

[54] CHEN Haidong,CHENG Yuanping,REN Tingxiang,et al. Permeability distribution characteristics of protected coal seams during unloading of the coal body[J]. International Journal of Rock Mechanics and Mining Sciences,2014,71:105−116.

[55] 薛东杰,周宏伟,唐咸力,等. 采动煤岩体瓦斯渗透率分布规律与演化过程[J]. 煤炭学报,2013,38(6):930−935.

XUE Dongjie,ZHOU Hongwei,TANG Xianli,et al. Evolution of mining−induced enhancement and distribution of gas permeability in coal seam and surrounding rock[J]. Journal of China Coal Society,2013,38(6):930−935.

[56] 程斌,赵龙,李志梁. 采动影响区被保护煤层渗透率分布规律[J]. 煤田地质与勘探,2017,45(3):77−81.

CHENG Bin,ZHAO Long,LI Zhiliang. Permeability distribution law of protected coal seam in mining–affected zone[J]. Coal Geology & Exploration,2017,45(3):77−81.

[57] 张村. 高瓦斯煤层群应力–裂隙–渗流耦合作用机理及其对卸压抽采的影响[D]. 徐州:中国矿业大学,2017.

ZHANG Cun. Coupling mechanism of stress–fracture–flow in high gas coal seam group and its impact on pressure relief extraction[D]. Xuzhou:China University of Mining and Technology,2017.

[58] 李海涛,闫大鹤,浦仕江,等. 近距离煤层群保护层开采底板卸压瓦斯抽采技术研究[J]. 煤炭工程,2020,52(7):78−82.

LI Haitao,YAN Dahe,PU Shijiang,et al. Gas extraction with floor stress relieving of protective layer mining in contiguous coal seams[J]. Coal Engineering,2020,52(7):78−82.

[59] HE Xiang,YANG Ke,HAN Penghua,et al. Permeability enhancement and gas drainage effect in deep high gassy coal seams via long–distance pressure relief mining:A case study[J]. Advances in Civil Engineering,2021,2021:6637052.

[60] YANG Feng,GE Zhaolong,CHEN Jiufu,et al. A comprehensive gas extraction system coupling high–level suction roadway and boreholes for gas disaster prevention in closely–spaced multiple coal seams[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2020,00:1−14.

[61] 陈延可,戴广龙,汪大全,等. 上保护层开采卸压瓦斯治理技术研究[J]. 煤炭科学技术,2013,41(3):77−80.

CHEN Yanke,DAI Guanglong,WANG Daquan,et al. Study on pressure released gas control technology of upper protective seam mining[J]. Coal Science and Technology,2013,41(3):77−80.

[62] 胡杰,冯康武,孙臣,等. 近距离薄煤层群上保护层开采邻近层卸压瓦斯抽采模式探究[J]. 中国安全生产科学技术,2021,17(11):65−71.

HU Jie,FENG Kangwu,SUN Chen,et al. Research on pressure–relief gas drainage mode of adjacent coal seams in upper protective layer mining of close thin coal seam group[J]. Journal of Safety Science and Technology,2021,17(11):65−71.

[63] 郭建行. 上保护层开采底板卸压规律及瓦斯治理技术[J]. 煤炭工程,2022,54(10):80−85.

GUO Jianhang. Floor pressure relief law and gas control technology in upper protective seam mining[J]. Coal Engineering,2022,54(10):80−85.

[64] 王斌,曹铁忠,王春林. 远距离保护层区域瓦斯治理技术[J]. 煤炭科学技术,2013,41(增刊2):237−238.

WANG Bin,CAO Tiezhong,WANG Chunlin. Control technology of gas with long distance protection layer[J]. Coal Science and Technology,2013,41(Sup.2):237−238.

[65] CAO Zuoyong,HE Xueqiu,WANG Enyuan,et al. Protection scope and gas extraction of the low–protective layer in a thin coal seam:Lessons from the Dahe Coalfield,China[J]. Geosciences Journal,2018,22:487−499.

[66] 范鹏宏. 保护层开采卸压瓦斯抽采技术研究[J]. 煤炭工程,2014,46(5):65−67.

FAN Penghong. Study on pressure released gas drainage technology applied to protective seam mining layer mining[J]. Coal Engineering,2014,46(5):65−67.

[67] 程国建. 中远距离上保护层开采被保护层卸压时空效应及应用研究[J]. 矿业安全与环保,2014,41(4):80−83.

CHENG Guojian. Study on pressure–relief time–space effect of protected seam with medium and long interval in extraction of upper protective seam and its application[J]. Mining Safety & Environmental Protection,2014,41(4):80−83.

[68] 朱红青,张民波,王宁,等. Y型通风高位钻孔抽采被保护层卸压瓦斯研究[J]. 煤炭科学技术,2013,41(2):56−59.

ZHU Hongqing,ZHANG Minbo,WANG Ning,et al. Study on pressure released gas drainage in protected seam with high level borehole under Y type ventilation[J]. Coal Science and Technology,2013,41(2):56−59.

[69] 程详,赵光明,李英明,等. 软岩保护层开采覆岩采动裂隙带演化及卸压瓦斯抽采研究[J]. 采矿与安全工程学报,2020,37(3):533−542.

CHENG Xiang,ZHAO Guangming,LI Yingming,et al. Evolution of overburden mining−induced fractured zone and pressure−relief gas drainage in soft rock protective seam[J]. Journal of Mining and Safety Engineering,2020,37(3):533−542.

[70] 武杰,桑树勋,方良才,等. 淮南矿区保护层开采卸压范围及瓦斯抽采地面井部署[J]. 煤田地质与勘探,2010,38(3):10−14.

WU Jie,SANG Shuxun,FANG Liangcai,et al. Protective seam mining released range and the site deployment of the released methane draining surface well in Huainan Mine Area[J]. Coal Geology & Exploration,2010,38(3):10−14.

[71] 甘林堂. 地面钻井抽采被保护层采动区卸压瓦斯技术研究[J]. 煤炭科学技术,2019,47(11):110−115.

GAN Lintang. Study on pressure relief gas drainage technology in mining area of ground drilling in protected layer[J]. Coal Science and Technology,2019,47(11):110−115.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.