•  
  •  
 

Coal Geology & Exploration

Abstract

North China type coalfield is an important coal base in China, and hydrogeochemical prospecting is an important means to solve a series of hydrogeological problems in the process of coal mining. The typical hydrogeological problems under the influence of mining were analyzed based on the generalization of the typical hydrogeological structure of North China type coalfield. Meanwhile, the multi-field coupling relationship of groundwater and the mechanism of hydrogeochemical prospecting in North China type coalfield, as well as its testing, analysis and treatment technology, were revealed. Besides, the reliability of hydrogeochemical prospecting technology in North China type coalfield was pointed out by reviewing the development history of hydrogeochemical theory. In addition, the commonly used hydrogeochemical components and the testing instruments of groundwater were summarized, and the technical means of hydrogeochemical prospecting were elaborated from graphical method, mathematical statistical method, physical simulation and numerical simulation, etc. On this basis, the progress of research on application of key technologies for hydrogeochemical prospecting under the multi-field coupling in North China type coalfield was reviewed from the aspects of groundwater resource evaluation, dynamic identification of water inrush sources, spatiotemporal evolution of hydrogeochemistry, anomaly inversion of groundwater dynamics, geological structure anomaly inversion, construction of groundwater mixed mode and hydrothermal resources exploration, etc. Hence, the superiority and operability of hydrogeochemical prospecting was clarified. Moreover, the typical technical core of hydrogeochemical prospecting in North China type coalfield was proposed in combination with the hydrogeological conditions of North China type coalfield, and the existing problems were pointed out, indicating the effort direction in the research of hydrogeochemical prospecting technology.

Keywords

North China type coalfield, hydrogeochemical prospecting, hydrochemistry, research progress

DOI

10.12363/issn.1001-1986.23.01.0025

Reference

[1] 武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013.

[2] 杨建,刘洋,方刚. 煤矿水文地质勘探中水文地球化学判别标准的构建[J]. 煤田地质与勘探,2018,46(1):92−96.

YANG Jian,LIU Yang,FANG Gang. Construction of hydrogeochemistry criteria in hydrogeological exploration in coal mines[J]. Coal Geology & Exploration,2018,46(1):92−96.

[3] 孙亚军,张莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437.

SUN Yajun,ZHANG Li,XU Zhimin,et al. Multi–field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437.

[4] 武强,金玉洁. 华北型煤田矿井防治水决策系统[M]. 北京:煤炭工业出版社,1995.

[5] 董书宁,郭小铭,刘其声,等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探,2020,48(4):1−10.

DONG Shuning,GUO Xiaoming,LIU Qisheng,et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration,2020,48(4):1−10.

[6] 武强,贾秀,曹丁涛,等. 华北型煤田中奥陶统碳酸盐岩古风化壳天然隔水性能评价方法与应用[J]. 煤炭学报,2014,39(8):1735−1741.

WU Qiang,JIA Xiu,CAO Dingtao,et al. Impermeability evaluation method and its application on the ancient weathering crust of carbonatite in Middle Ordovician system in North China coalfield[J]. Journal of China Coal Society,2014,39(8):1735−1741.

[7] 武强,董东林,钱增江,等. 试论华北型煤田立体充水地质结构理论[J]. 水文地质工程地质,2000(2):47−49.

WU Qiang,DONG Donglin,QIAN Zengjiang,et al. On the theory of three−dimensional water−filled geological structure of North China type coalfield[J]. Hydrogeology & Engineering Geology,2000(2):47−49.

[8] 彭苏萍. 深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J]. 煤,2008,17(2):1−11.

PENG Suping. Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J]. Coal,2008,17(2):1−11.

[9] 李建中,周爱国,周建伟,等. 华北煤田矿山开采导致含水层破坏风险评估:以淄博洪山煤矿为例[J]. 地球科学,2020,45(3):1027−1040.

LI Jianzhong,ZHOU Aiguo,ZHOU Jianwei,et al. Risk assessment of aquifer destruction in underground mining coal of North China:A case study of Hongshan Mine in Zibo City[J]. Earth Science,2020,45(3):1027−1040.

[10] 吴金随,张辞源,尹尚先,等. 近20a我国煤矿水害事故统计及分析[J]. 煤炭技术,2022,41(6):86−89.

WU Jinsui,ZHANG Ciyuan,YIN Shangxian,et al. Statistics and analysis of coal mine water damage accidents in China in recent 20 years[J]. Coal Technology,2022,41(6):86−89.

[11] 董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,35(5):34−37.

DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploration,2007,35(5):34−37.

[12] 蔡美峰,马明辉,潘继良,等. 矿产与地热资源共采模式研究现状及展望[J]. 工程科学学报,2022,44(10):1669−1681.

CAI Meifeng,MA Minghui,PAN Jiliang,et al. Co–mining of mineral and geothermal resources:A state–of–the–art review and future perspectives[J]. Chinese Journal of Engineering,2022,44(10):1669−1681.

[13] H. K. 伊格纳托维奇. 俄国地台的水文地质[M]. Henpa,1948.

[14] WANG Heng,JIANG Xiaowei,WAN Li,et al. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin[J]. Journal of Hydrology,2015,527:433−441.

[15] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.

YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.

[16] 周长松,邹胜章,冯启言,等. 岩溶关键带水文地球化学研究进展[J]. 地学前缘,2022,29(3):37−50.

ZHOU Changsong,ZOU Shengzhang,FENG Qiyan,et al. Progress in hydrogeochemical study of karst critical zone:A critical review[J]. Earth Science Frontiers,2022,29(3):37−50.

[17] 王海,王永刚,张雁,等. 生态脆弱露天矿区截水帷幕下松散层水位演化规律[J]. 煤田地质与勘探,2022,50(7):36−43.

WANG Hai,WANG Yonggang,ZHANG Yan,et al. Water level evolution pattern of loose layers under water cutoff curtain in ecologically fragile open–pit mines[J]. Coal Geology & Exploration,2022,50(7):36−43.

[18] 代锋刚,张发旺,王滨,等. 群矿开采条件下山西潞安矿区的地下水流场变化[J]. 地球学报,2018,39(1):94−102.

DAI Fenggang,ZHANG Fawang,WANG Bin,et al. Changes of the groundwater flow field of Lu’ an mining area,Shanxi Province,under the condition of group mining[J]. Acta Geoscientica Sinica,2018,39(1):94−102.

[19] 曹志国,张建民,王皓,等. 西部矿区煤水协调开采物理与情景模拟实验研究[J]. 煤炭学报,2021,46(2):638−651.

CAO Zhiguo,ZHANG Jianmin,WANG Hao,et al. Physical modelling and scenario simulation of coal and water co–mining in coal mining areas in western China[J]. Journal of China Coal Society,2021,46(2):638−651.

[20] 孙从军,韩振波,赵振,等. 地下水数值模拟的研究与应用进展[J]. 环境工程,2013,31(5):9−13.

SUN Congjun,HAN Zhenbo,ZHAO Zhen,et al. Advances in research and application of groundwater numerical simulation[J]. Environmental Engineering,2013,31(5):9−13.

[21] 李义连,杨玉环,卢学实. 水–岩相互作用模拟的研究进展[J]. 水文地质工程地质,2003(3):95−99.

LI Yilian,YANG Yuhuan,LU Xueshi. Research advance on modeling study of water–rock interaction[J]. Hydrogeology & Engineering Geology,2003(3):95−99.

[22] 汪家权,刘万茹,钱家忠,等. 基于单因子污染指数地下水质量评价灰色模型[J]. 合肥工业大学学报(自然科学版),2002,25(5):697−702.

WANG Jiaquan,LIU Wanru,QIAN Jiazhong,et al. Grey model of groundwater quality assessment based on single factor contaminant index[J]. Journal of Hefei University of Technology (Natural Science),2002,25(5):697−702.

[23] 陈朋,王家鼎,袁亮,等. 修正内梅罗指数法和模糊综合评判法在凤凰镇地下水水质评价中的应用[J]. 水土保持通报,2017,37(2):165−170.

CHEN Peng,WANG Jiading,YUAN Liang,et al. Application of modified Nemerow index and fuzzy comprehensive evaluation method on groundwater quality evaluation of Fenghuang Town[J]. Bulletin of Soil and Water Conservation,2017,37(2):165−170.

[24] 刘博,肖长来,田浩然,等. 灰色关联和层次分析法在地下水质评价中的应用:以吉林市为例[J]. 节水灌溉,2013(1):26−29.

LIU Bo,XIAO Changlai,TIAN Haoran,et al. Application of method combining grey relation with analytic hierarchy process for groundwater quality evaluation in Jilin City[J]. Water Saving Irrigation,2013(1):26−29.

[25] 方运海,郑西来,彭辉,等. 基于模糊综合与可变模糊集耦合的地下水质量评价[J]. 环境科学学报,2018,38(2):546−552.

FANG Yunhai,ZHENG Xilai,PENG Hui,et al. Groundwater quality evaluation based on fuzzy synthetic evaluation and variable fuzzy sets[J]. Acta Scientiae Circumstantiae,2018,38(2):546−552.

[26] 林曼利,桂和荣,彭位华. 安徽北部矿区深层地下水重金属含量特征及水质评价[J]. 安全与环境学报,2014,14(6):266−271.

LIN Manli,GUI Herong,PENG Weihua. Study on content characteristics and water quality assessment of heavy metals in deep groundwater from northern Anhui mining areas[J]. Journal of Safety and Environment,2014,14(6):266−271.

[27] 凌新颖,马金珠,陈沛源,等. 陇东黄土高原董志塬区地下水水化学特征与14C年龄[J]. 兰州大学学报(自然科学版),2021,57(1):24−32.

LING Xinying,MA Jinzhu,CHEN Peiyuan,et al. Hydrogeochemical characteristics and radiocarbon dating of groundwater in the Dongzhi Tableland of Longdong Loess Plateau[J]. Journal of Lanzhou University (Natural Sciences),2021,57(1):24−32.

[28] 刘峰,崔亚莉,张戈,等. 应用氚和14C方法确定柴达木盆地诺木洪地区地下水年龄[J]. 现代地质,2014,28(6):1322−1328.

LIU Feng,CUI Yali,ZHANG Ge,et al. Using the 3H and 14C dating methods to calculate the groundwater age in Nuomuhong,Qaidam Basin[J]. Geoscience,2014,28(6):1322−1328.

[29] 马宝强,王潇,汤超. 环境示踪剂(3H、Cl)在干旱半干旱区地下水补给研究中的应用[J]. 山东国土资源,2021,37(11):67−71.

MA Baoqiang,WANG Xiao,TANG Chao. Application of environmental tracers (3H、Cl) for groundwater recharge research in arid and semi–arid regions[J]. Shandong Land and Resources,2021,37(11):67−71.

[30] 黄平华,陈建生. 基于多元统计分析的矿井突水水源Fisher识别及混合模型[J]. 煤炭学报,2011,36(增刊1):131−136.

HUANG Pinghua,CHEN Jiansheng. Fisher identify and mixing model based on multivariate statistical analysis of mine water inrush sources[J]. Journal of China Coal Society,2011,36(Sup.1):131−136.

[31] 张好,姚多喜,鲁海峰,等. 主成分分析与Bayes判别法在突水水源判别中的应用[J]. 煤田地质与勘探,2017,45(5):87−93.

ZHANG Hao,YAO Duoxi,LU Haifeng,et al. Application of principal component analysis and Bayes discrimination approach in water source identification[J]. Coal Geology & Exploration,2017,45(5):87−93.

[32] 王心义,赵伟,刘小满,等. 基于熵权–模糊可变集理论的煤矿井突水水源识别[J]. 煤炭学报,2017,42(9):2433−2439.

WANG Xinyi,ZHAO Wei,LIU Xiaoman,et al. Identification of water inrush source from coalfield based on entropy weight–fuzzy variable set theory[J]. Journal of China Coal Society,2017,42(9):2433−2439.

[33] 王心义,徐涛,黄丹. 距离判别法在相似矿区突水水源识别中的应用[J]. 煤炭学报,2011,36(8):1354−1358.

WANG Xinyi,XU Tao,HUANG Dan. Application of distance discriminance in identifying water inrush resource in similar coalmine[J]. Journal of China Coal Society,2011,36(8):1354−1358.

[34] 温廷新,张波,邵良杉. 矿井突水水源识别预测研究:以新庄孜矿为例[J]. 中国安全科学学报,2014,24(2):100−106.

WEN Tingxin,ZHANG Bo,SHAO Liangshan. Research on prediction of mine water inrush source identification:Xinzhuangzi Coalfield as an example[J]. China Safety Science Journal,2014,24(2):100−106.

[35] 徐星,郭兵兵,王公忠. 人工神经网络在矿井多水源识别中的应用[J]. 中国安全生产科学技术,2016,12(1):181−185.

XU Xing,GUO Bingbing,WANG Gongzhong. Application of artificial neural network for recognition of multiple water sources in mine[J]. Journal of Safety Science and Technology,2016,12(1):181−185.

[36] 陈陆望,刘鑫,殷晓曦,等. 采动影响下井田主要充水含水层水化学环境演化分析[J]. 煤炭学报,2012,37(增刊2):362−367.

CHEN Luwang,LIU Xin,YIN Xiaoxi,et al. Analysis of hydrochemical environment evolution in main discharge aquifers under mining disturbance in the coal mine[J]. Journal of China Coal Society,2012,37(Sup.2):362−367.

[37] 杨勇. 矿井突水水源类型在线判别理论与方法研究[D]. 徐州:中国矿业大学,2018.

YANG Yong. Research on the on–line discriminant theory and methods of mine inrush water[D]. Xuzhou:China University of Mining and Technology,2018.

[38] 王甜甜,靳德武,刘基,等. 动态权–集对分析模型在矿井突水水源识别中的应用[J]. 煤炭学报,2019,44(9):2840−2850.

WANG Tiantian,JIN Dewu,LIU Ji,et al. Application of dynamic weight–set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society,2019,44(9):2840−2850.

[39] HUANG Pinghua,HU Yongsheng,GAO Hongfei,et al. Dynamic identification and radium–radon response mechanism of floor mixed water source in high ground temperature coal mine[J]. Journal of Hydrology,2021,603:126942.

[40] 陈陆望,任星星,张杰,等. 淮北煤田太原组灰岩水水文地球化学形成作用及反向模拟研究[J]. 煤炭学报,2021,46(12):3999−4009.

CHEN Luwang,REN Xingxing,ZHANG Jie,et al. Hydrogeochemical formation and inverse simulation of limestone groundwater in Carboniferous Taiyuan Formation of Huaibei Coalfield[J]. Journal of China Coal Society,2021,46(12):3999−4009.

[41] 李七明,翟立娟,傅耀军,等. 华北型煤田煤层开采对含水层的破坏模式研究[J]. 中国煤炭地质,2012,24(7):38−43.

LI Qiming,ZHAI Lijuan,FU Yaojun,et al. A study on coal mining aquifer destruction mode in North China typed coalfields[J]. Coal Geology of China,2012,24(7):38−43.

[42] 武亚遵,潘春芳,林云,等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报,2018,37(5):191−199.

WU Yazun,PAN Chunfang,LIN Yun,et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China coalfield[J]. Geological Science and Technology Information,2018,37(5):191−199.

[43] 孔令健,姜春露,郑刘根,等. 淮北临涣矿采煤沉陷区不同水体水化学特征及其影响因素[J]. 湖泊科学,2017,29(5):1158−1167.

KONG Lingjian,JIANG Chunlu,ZHENG Liugen,et al. Characters of hydrochemistry and their influenced factors of different waters in the Linhuan coal mining subsidence area of Huaibei City[J]. Journal of Lake Sciences,2017,29(5):1158−1167.

[44] 王甜甜,薛建坤,尚宏波,等. 蒙陕接壤区矿井水中氟的污染特征及形成机制[J]. 煤炭学报,2022,47(11):4127−4138.

WANG Tiantian,XUE Jiankun,SHANG Hongbo,et al. Fluorine pollution characteristics and formation mechanism of mine water in Shaanxi and Inner Mongolia contiguous area[J]. Journal of China Coal Society,2022,47(11):4127−4138.

[45] 张苗,陈陆望,姚多喜,等. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用[J]. 合肥工业大学学报(自然科学版),2022,45(3):396−405.

ZHANG Miao,CHEN Luwang,YAO Duoxi,et al. Hydrogeochemical characteristics and water–rock interaction of limestone groundwater of Carboniferous Taiyuan Formation in Suxian mining area[J]. Journal of Hefei University of Technology (Natural Science),2022,45(3):396−405.

[46] ZHANG Jie,CHEN Luwang,HOU Xiaowei,et al. Effects of multi–factors on the spatiotemporal variations of deep confined groundwater in coal mining regions,North China[J]. Science of the Total Environment,2022,823:153741.

[47] 陈陆望,殷晓曦,桂和荣,等. 矿区深部含水层水–岩作用的同位素与水化学示踪分析[J]. 地质学报,2013,87(7):1021−1030.

CHEN Luwang,YIN Xiaoxi,GUI Herong,et al. Water–rock interaction tracing and analysis of deep aquifers in the mining area using isotope and hydrochemistry methods[J]. Acta Geologica Sinica,2013,87(7):1021−1030.

[48] 张磊,秦小光,刘嘉麒,等. 淮南采煤沉陷区积水来源的氢氧稳定同位素证据[J]. 吉林大学学报(地球科学版),2015,45(5):1502−1514.

ZHANG Lei,QIN Xiaoguang,LIU Jiaqi,et al. Characters of hydrogen and oxygen stable isotope of different water bodies in Huainan coal mining area[J]. Journal of Jilin University (Earth Science Edition),2015,45(5):1502−1514.

[49] 陈陆望,殷晓曦,刘鑫. 华北隐伏型煤矿深部含水层补给源水化学与同位素示踪[J]. 地理科学,2013,33(6):755−762.

CHEN Luwang,YIN Xiaoxi,LIU Xin. Tracing of recharge sources of deep aquifers in the concealed type colliery of North China by hydrochemistry and isotopes[J]. Scientia Geographica Sinica,2013,33(6):755−762.

[50] 张秋霞,周建伟,康凤新,等. 淄博煤矿区地下水污染水动力和同位素解析[J]. 环境科学与技术,2016,39(8):116−122.

ZHANG Qiuxia,ZHOU Jianwei,KANG Fengxin,et al. Hydrodynamic analysis and isotope tracing for probing into groundwater pollution of Zibo mining area[J]. Environmental Science and Technology,2016,39(8):116−122.

[51] 周秋石,王瑞. 氯同位素地球化学研究进展[J]. 地学前缘,2020,27(3):42−67.

ZHOU Qiushi,WANG Rui. Advances in chlorine isotope geochemistry[J]. Earth Science Frontiers,2020,27(3):42−67.

[52] 姜光辉,郭芳,汤庆佳,等. 人工示踪技术在岩溶地区水文地质勘察中的应用[J]. 南京大学学报(自然科学),2016,52(3):503−511.

JIANG Guanghui,GUO Fang,TANG Qingjia,et al. Application of tracer test techniques in hydrogeological survey in karst area[J]. Journal of Nanjing University (Natural Sciences),2016,52(3):503−511.

[53] 张梦南,李小倩,周爱国,等. 地下水中高氯酸盐来源的同位素示踪研究进展[J]. 地质科技情报,2014,33(4):177−184.

ZHANG Mengnan,LI Xiaoqian,ZHOU Aiguo,et al. Stable chlorine and multi−oxygen isotopic tracing of perchlorate in groundwater:A review[J]. Geological Science and Technology Information,2014,33(4):177−184.

[54] 周露. 皖北矿区断裂构造发育特征及控水作用研究[D]. 淮南:安徽理工大学,2021.

ZHOU Lu. Study on development characteristics of fault structure and water control in mining area of northern Anhui Province[D]. Huainan:Anhui University of Science and Technology,2021.

[55] ZHANG Jie,CHEN Luwang,CHEN Yifei,et al. Discrimination of water–inrush source and evolution analysis of hydrochemical environment under mining in Renlou Coal Mine,Anhui Province,China[J]. Environmental Earth Sciences,2020,79(2):61.

[56] VINCENT C,RENE L,RENE T,et al. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system[J]. Journal of Hydrology,2008,353(3/4):294–313.

[57] QIAO Xiaojun,LI Guomin,LI Ming,et al. Influence of coal mining on regional karst groundwater system:A case study in west mountain area of Taiyuan City,northern China[J]. Environmental Earth Sciences,2011,64(6):1525−1535.

[58] 桂和荣. 皖北矿区地下水水文地球化学特征及判别模式研究[D]. 合肥:中国科学技术大学,2005.

GUI Herong. Study on hydrogeochemical characteristics and discriminant model of groundwater in mining areas of northern Anhui[D]. Hefei:University of Science and Technology of China,2005.

[59] 张保建,沈照理,乔增宝,等. 地下热水的水化学资料在判断断层中的应用:以聊城市城区地热田为例[J]. 工程勘察,2010,38(1):51−54.

ZHANG Baojian,SHEN Zhaoli,QIAO Zengbao,et al. Hydrochemistry material of underground hot water application in fault determination:Taking geothermal field in Liaocheng City as an example[J]. Geotechnical Investigation and Surveying,2010,38(1):51−54.

[60] 乔元栋,孟召平,张村,等. 复杂构造井田含水层特征及其水力联系辨识[J]. 煤炭学报,2021,46(12):4010−4020.

QIAO Yuandong,MENG Zhaoping,ZHANG Cun,et al. Characteristics of mine aquifer with complex structure and identification of its hydraulic connection[J]. Journal of China Coal Society,2021,46(12):4010−4020.

[61] LI J,LIU J,PANG Z,et al. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment,Beijing[J]. Procedia Earth and Planetary Science,2013,7:487−490.

[62] MA Jinzhu,HE Jianhua,QI Shi,et al. Groundwater recharge and evolution in the Dunhuang Basin,northwestern China[J]. Applied Geochemistry,2013,28:19−31.

[63] LUO Weijun,WANG Shijie,XIE Xingneng. A comparative study on the stable isotopes from precipitation to speleothem in four caves of Guizhou,China[J]. Geochemistry,2013,73(2):205−215.

[64] HAN D M,SONG X F,CURRELL M J,et al. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay,China[J]. Journal of Hydrology,2014,508:12−27.

[65] 李向全,张春潮,侯新伟. 采煤驱动下晋东大型煤炭基地地下水循环演变特征:以辛安泉域为例[J]. 煤炭学报,2021,46(9):3015−3026.

LI Xiangquan,ZHANG Chunchao,HOU Xinwei. Characteristics of groundwater circulation and evolution in Jindong large coal base driven by coal mining:An example of Xin’an Spring Area[J]. Journal of China Coal Society,2021,46(9):3015−3026.

[66] 殷晓曦. 采动影响下宿县–临涣矿区地下水循环–水化学演化及其混合模型研究[D]. 合肥:合肥工业大学,2017.

YIN Xiaoxi. Study on groundwater circulation–hydrochemical evolution and mixing model under mining–induced disturbance in Suxian–Linhuan mining area[D]. Hefei:Hefei University of Technology,2017.

[67] 王强民,王皓,杨建,等. 西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别[J]. 工程地质学报,2021,29(4):1084−1093.

WANG Qiangmin,WANG Hao,YANG Jian,et al. Hydrogeochemical characteristics of main water filled aquifers and source indicators of mine water in typical Jurassic mine area of western China[J]. Journal of Engineering Geology,2021,29(4):1084−1093.

[68] 周艳清,高晓东,王嘉昕,等. 柴达木盆地灌区枸杞根系水分吸收来源研究[J]. 中国生态农业学报(中英文),2021,29(2):400−409.

ZHOU Yanqing,GAO Xiaodong,WANG Jiaxin,et al. Lycium barbarum root water uptake characteristics in the Qaidam Basin irrigation[J]. Chinese Journal of Eco–Agriculture,2021,29(2):400−409.

[69] HUANG Pinghua,GAO Hongfei,SU Qiaoqiao,et al. Identification of mixing water source and response mechanism of radium and radon under mining in limestone of coal seam floor[J]. Science of the Total Environment,2022,857(P3):159666.

[70] 史晓杰,万力,张永庭,等. 银北地区土壤盐渍化形成机理与模拟研究[J]. 水文地质工程地质,2007(6):116−120.

SHI Xiaojie,WAN Li,ZHANG Yongting,et al. Simulation model for soil salinization in the northern region of the Yinchuan Plain[J]. Hydrogeology & Engineering Geology,2007(6):116−120.

[71] CHEN Luwang,YIN Xiaoxi,XIE Wenpin,et al. Calculating groundwater mixing ratios in groundwater−inrushing aquifers based on environmental stable isotopes (D,18O) and hydrogeochemistry[J]. Natural Hazards,2014,71:937−953.

[72] 张吉雄,汪集暘,周楠,等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报,2022,44(10):1682−1693.

ZHANG Jixiong,WANG Jiyang,ZHOU Nan,et al. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering,2022,44(10):1682−1693.

[73] 陈艳,葛秀珍. 地热资源勘察方法论述[J]. 中国人口资源与环境,2016,26(11):400−402.

CHEN Yan,GE Xiuzhen. A review of methods for geothermal exploration[J]. China Population,Resources and Environment,2016,26(11):400−402.

[74] 钱会,马致远. 水文地球化学[M]. 北京:地质出版社,2005.

[75] 孙红丽,马峰,蔺文静,等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报,2015,34(3):171−177.

SUN Hongli,MA Feng,LIN Wenjing,et al. Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information,2015,34(3):171−177.

[76] 王欣,漆继红,许模,等. Na–K–Mg三角图修正与Na–K温标选取[J]. 煤田地质与勘探,2019,47(2):121−128.

WANG Xin,QI Jihong,XU Mo,et al. Modification of Na–K–Mg triangular diagram and selection of Na–K geothermometer[J]. Coal Geology & Exploration,2019,47(2):121−128.

[77] 李洁祥,郭清海,余正艳. 高温地热系统中粘土矿物形成对Na–K和K–Mg地球化学温标准确性的影响[J]. 地球科学,2017,42(1):142−154.

LI Jiexiang,GUO Qinghai,YU Zhengyan. Impact of clay mineral formation in high–temperature geothermal system on accuracy of Na−K and K−Mg geothermometers[J]. Earth Science,2017,42(1):142−154.

[78] 郭静,毛绪美,童晟,等. 水化学温度计估算粤西沿海深部地热系统热交换温度[J]. 地球科学,2016,41(12):2075−2087.

GUO Jing,MAO Xumei,TONG Sheng,et al. Using hydrochemical geothermometers calculate exchange temperature of deep geothermal system in west coastal area of Guangdong Province[J]. Earth Science,2016,41(12):2075−2087.

[79] 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉:中国地质大学,2018.

WANG Xiao. Formation conditions and hydrogeochemical characteristics of the geothermal water in typical coastal geothermal field with deep faults,Guangdong Province[D]. Wuhan:China University of Geosciences,2018.

[80] 何欣,马悦. 华北板块奥陶系碳酸盐岩热储的水化学特征及其成因机制[J]. 安全与环境工程,2019,26(3):9−15.

HE Xin,MA Yue. Hydrochemical features and formation mechanism of the Ordovician carbonate reservoir in North China Plate[J]. Safety and Environmental Engineering,2019,26(3):9−15.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.