•  
  •  
 

Coal Geology & Exploration

Authors

LIU Shiqi, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, ChinaFollow
HUANG Fansheng, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, ChinaFollow
DU Ruibin, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221008, China
CHEN Shiheng, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221008, China
GUAN Yiting, Exploration and Development Research Institute, PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
LIU Yinghai, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221008, China
WANG Tao, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221008, China

Abstract

The implementation of the geological sequestration and utilization of CO2 (CGSU) has considerable effects on CO2 emission reduction and is of great significance for the mitigation of global warming and the execution of the sustainable development strategy in China. Therefore, this study sorted the major methods for CGSU, made statistics of the global demonstration projects of CGSU, and primarily introduced the typical demonstration projects of CGSU in China. Furthermore, this study proposed prospects for the development trend of the CGSU technologies, which primarily include CO2 enhanced oil recovery (CO2-EOR), CO2 enhanced coalbed methane recovery (CO2-ECBM), CO2 enhanced saline water recovery (CO2-ESWR), CO2 enhanced nature gas recovery (CO2-ENGR), CO2 enhanced shale gas recovery (CO2-ESGR), CO2 enhanced geothermal power generation (CO2-EGP), and CO2-based in-situ leaching of uranium (CO2-ILU) at present. Among them, CO2-EOR, CO2-ESWR, and CO2-ILU have been widely and commercially applied at home and abroad due to their complete technical systems, while other methods of CGSU are still in the stage of field tests and engineering exploration. A total of 23 CGSU projects have been implemented in China, including 12 CO2-EOR projects, two CO2-ESWR projects, seven CO2-ECBM projects, and two CO2-ILU projects. The CGSU technology in China started late and still lags behind that of developed countries in Europe and the USA. There is an urgent need to accelerate the construction of demonstration projects of the whole process technology and cluster deployment of CGSU with a scale of more than 1 million tons/year and enhance the basic science research on the technology and cluster deployment of CGSU in the future. The main purpose is to solve the bottlenecks in the critical links of the whole-process technology of CGSU.

Keywords

carbon dioxide, geological storage and geological utilization, carbon reduction, climate change, demonstration project

DOI

10.12363/issn.1001-1986.22.12.0998

Reference

[1] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.

SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.

[2] 王伟东,李少杰,韩九曦. 世界主要煤炭资源国煤炭供需形势分析及行业发展展望[J]. 中国矿业,2015,24(2):5−9.

WANG Weidong,LI Shaojie,HAN Jiuxi. Analysis of the main global coal resource countries’ supply−demand structural trend and coal industry outlook[J]. China Mining Magazine,2015,24(2):5−9.

[3] 邹才能,吴松涛,杨智,等. 碳中和战略背景下建设碳工业体系的进展、挑战及意义[J]. 石油勘探与开发,2023,50(1):190−205.

ZOU Caineng,WU Songtao,YANG Zhi,et al. Progress,challenge and significance of building a carbon industry system in the context of carbon neutrality strategy[J]. Petroleum Exploration and Development,2023,50(1):190−205.

[4] JIANG Kai,ASHWORTH P,ZHANG Shiyi,et al. China’s carbon capture,utilization and storage (CCUS) policy:A critical review[J]. Renewable and Sustainable Energy Reviews,2020,119:109601.

[5] JIANG Kai,ASHWORTH P. The development of carbon capture utilization and storage (CCUS) research in China:A bibliometric perspective[J]. Renewable and Sustainable Energy Reviews,2021,138:110521.

[6] YAN Jinyue,ZHANG Zhi’en. Carbon capture,utilization and storage (CCUS)[J]. Applied Energy,2019,235:1289−1299.

[7] MA Jinfeng,LI Lin,WANG Haofan,et al. Carbon capture and storage:History and the road ahead[J]. Engineering,2022,14:33−43.

[8] WANG Nan,AKIMOTO K,NEMET G F. What went wrong? Learning from three decades of carbon capture,utilization and sequestration (CCUS) pilot and demonstration projects[J]. Energy Policy,2021,158:112546.

[9] 崔振东,刘大安,曾荣树,等. 中国CO2地质封存与可持续发展[J]. 中国人口·资源与环境,2010,20(3):9−13.

CUI Zhendong,LIU Da’an,ZENG Rongshu,et al. Geological sequestration of CO2 and China’s sustainable development[J]. China Population,Resources and Environment,2010,20(3):9−13.

[10] 秦积舜,李永亮,吴德彬,等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率,2020,27(1):20−28.

QIN Jishun,LI Yongliang,WU Debin,et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency,2020,27(1):20−28.

[11] 胥蕊娜,姜培学. CO2地质封存与利用技术研究进展[J]. 中国基础科学,2018,20(4):44−48.

XU Ruina,JIANG Peixue. Research progress of CO2 geological storage and utilization technology[J]. China Basic Science,2018,20(4):44−48.

[12] 胥蕊娜,吉天成,陆韬杰,等. 二氧化碳地质封存与增产油/气/热利用技术中关键热质传递问题研究进展[J]. 清华大学学报(自然科学版),2022,62(4):634−654.

XU Ruina,JI Tiancheng,LU Taojie,et al. Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology[J]. Journal of Tsinghua University (Science & Technology),2022,62(4):634−654.

[13] 包一翔,李井峰,郭强,等. 二氧化碳用于地质资源开发及同步封存技术综述[J]. 煤炭科学技术,2022,50(6):84−95.

BAO Yixiang,LI Jingfeng,GUO Qiang,et al. Review on technologies of geological resources exploitation by using carbon dioxide and its synchronous storage[J]. Coal Science and Technology,2022,50(6):84−95.

[14] 孙腾民,刘世奇,汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术,2021,49(11):10−20.

SUN Tengmin,LIU Shiqi,WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology,2021,49(11):10−20.

[15] 臧雅琼,高振记,钟伟. CO2地质封存国内外研究概况与应用[J]. 环境工程技术学报,2012,2(6):503−507.

ZANG Yaqiong,GAO Zhenji,ZHONG Wei. Overview of research and application of CO2 geological sequestration at home and abroad[J]. Journal of Environmental Engineering Technology,2012,2(6):503−507.

[16] 姜睿. 国内外CCUS项目现状分析及展望[J]. 安全、健康和环境,2022,22(4):1−4.

JIANG Rui. Status analysis and prospect of domestic and foreign CCUS projects[J]. Safety,Health & Environment,2022,22(4):1−4.

[17] TURAN G,ZAPANTIS A,KEARNS D,et al. Global status of CCS 2021[J]. CCS Accelerating to Net Zero,2021.

[18] 王珊珊,安宁. 中国石油完成国内最大规模“碳”注入:松辽盆地CCUS工业化应用取得新进展[N]. 中国石油报,2022-12-30.

[19] 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 北京:生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021.

[20] 王紫剑,唐玄,荆铁亚,等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质,2022,36(5):1414−1431.

WANG Zijian,TANG Xuan,JING Tieya,et al. Site selection strategy for an annual million–ton scale CO2 geological storage in China[J]. Geoscience,2022,36(5):1414−1431.

[21] 方圆. 落实“双碳”目标化工建设企业大有可为:陕西国华锦界15万t/a二氧化碳捕集 (CCS) 示范工程建设纪实[J]. 石油化工建设,2021,43(5):1−5.

FANG Yuan. Chemical construction enterprises have bright prospects under the“double carbon”target–the construction record of 150000 t/a carbon dioxide capture (CCS) demonstration project of Shaanxi Guohua Jinjie Energy Co.,Ltd[J]. Petroleum and Chemical Construction,2021,43(5):1−5.

[22] 刘强,田川. 我国碳捕集、利用和封存的现状评估和发展建议[J]. 气候战略研究简报,2017(24):1−14.

LIU Qiang,TIAN Chuan. Status assessment and development suggestions of carbon capture,utilization and storage in China[J]. Climate Strategy Research Briefing,2017(24):1−14.

[23] 袁士义,马德胜,李军诗,等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望[J]. 石油勘探与开发,2022,49(4):828−834.

YUAN Shiyi,MA Desheng,LI Junshi,et al. Progress and prospects of carbon dioxide capture,EOR–utilization and storage industrialization[J]. Petroleum Exploration and Development,2022,49(4):828−834.

[24] 胡永乐,郝明强,陈国利,等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发,2019,46(4):716−727.

HU Yongle,HAO Mingqiang,CHEN Guoli,et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development,2019,46(4):716−727.

[25] 彭会君. 碳中和目标下CCUS技术在油田的应用前景[J]. 油气田地面工程,2022,41(9):15−19.

PENG Huijun. Application prospect of CCUS technology in oilfield under carbon neutral target[J]. Oil–Gas Field Surface Engineering,2022,41(9):15−19.

[26] ANDERSEN P Ø,BRATTEKÅS B,ZHOU Yingfang,et al. Carbon capture utilization and storage (CCUS) in tight gas and oil reservoirs[J]. Journal of Natural Gas Science and Engineering,2020,81:103458.

[27] 郭雪飞,孙洋洲,张敏吉,等. 油气行业二氧化碳资源化利用技术途径探讨[J]. 国际石油经济,2022,30(1):59−66.

GUO Xuefei,SUN Yangzhou,ZHANG Minji,et al. Discussion on technical approaches of carbon dioxide resource utilization in oil and gas industry[J]. International Petroleum Economics,2022,30(1):59−66.

[28] 宋新民,王峰,马德胜,等. 中国石油二氧化碳捕集、驱油与埋存技术进展及展望[J]. 石油勘探与开发,2023,50(1):206−218.

SONG Xinmin,WANG Feng,MA Desheng,et al. Progress and prospect of carbon dioxide capture,utilization and storage in CNPC oilfields[J]. Petroleum Exploration and Development,2023,50(1):206−218.

[29] LEENA K. 2014 worldwide EOR survey[J]. Oil & Gas Journal,2014,112(4):79−91.

[30] 秦积舜,韩海水,刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发,2015,42(2):209−216.

QIN Jishun,HAN Haishui,LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration and Development,2015,42(2):209−216.

[31] JENSEN G. Assessing the potential for CO2 EOR and CO2 storage in depleted oil pools in Southeastern Saskatchewan,Canada[J]. Canada (December 9,2022,):2022.

[32] 张德平. CO2驱采油技术研究与应用现状[J]. 科技导报,2011,29(13):75−79.

ZHANG Deping. CO2 flooding enhanced oil recovery technique and its application status[J]. Science & Technology Review,2011,29(13):75−79.

[33] HILL L B,LI Xiaochun,WEI Ning. CO2–EOR in China:A comparative review[J]. International Journal of Greenhouse Gas Control,2020,103:103173.

[34] 汪传胜,田蓉,季峻峰,等. 苏北盆地油田封存二氧化碳潜力初探[J]. 高校地质学报,2012,18(2):225−231.

WANG Chuansheng,TIAN Rong,JI Junfeng,et al. Preliminary estimation of carbon dioxide storage capacity in the oil reservoirs in Subei Basin[J]. Geological Journal of China Universities,2012,18(2):225−231.

[35] 陈祖华,蒲敏,杨春红,等. CS油田CT复杂断块低渗透油藏CO2驱动态调整研究[J]. 石油天然气学报,2012,34(1):132−135.

CHEN Zuhua,PU Min,YANG Chunhong,et al. Study on dynamic adjustment of CO2 flooding in low permeability reservoirs of a complex fault block[J]. Journal of Oil and Gas Technology,2012,34(1):132−135.

[36] 王国锋. 吉林油田二氧化碳捕集、驱油与埋存技术及工程实践[J]. 石油勘探与开发,2023,50(1):219−226.

WANG Guofeng. Carbon dioxide capture,enhanced–oil recovery and storage technology and engineering practice in Jilin Oilfield,NE China[J]. Petroleum Exploration and Development,2023,50(1):219−226.

[37] 许志刚,陈代钊,曾荣树,等. 我国吉林油田大情字井区块CO2地下埋存试验区地质埋存格架[J]. 地质学报,2009,83(6):875−884.

XU Zhigang,CHEN Daizhao,ZENG Rongshu,et al. Geological storage framework of CO2 subsurface burial trial area of Daqingzijing Block in the Jilin Oilfield[J]. Acta Geologica Sinica,2009,83(6):875−884.

[38] 王维波,汤瑞佳,江绍静,等. 延长石油煤化工CO2捕集、利用与封存(CCUS)工程实践[J]. 非常规油气,2021,8(2):1−7.

WANG Weibo,TANG Ruijia,JIANG Shaojing,et al. The engineering practice of CO2 capture,utilization and storage (CCUS) in coal chemical industry of Yanchang Petroleum[J]. Unconventional Oil & Gas,2021,8(2):1−7.

[39] 张英芝,杨铁军,杨正明,等. 榆树林油田特低渗透扶杨油层CO2驱油效果评价[J]. 科技导报,2015,33(5):52−56.

ZHANG Yingzhi,YANG Tiejun,YANG Zhengming,et al. Evaluation of oil displacement by CO2 at Fuyang extra–low permeability layer in Yushulin Oilfield[J]. Science & Technology Review,2015,33(5):52−56.

[40] MA Jinfeng,WANG Xiangzeng,GAO Ruimin,et al. Jingbian CCS project in China:2015 update[J]. Energy Procedia,2017,114:5768−5782.

[41] 国家能源局. 我国首个百万吨级CCUS项目全面建成投产[EB/OL]. (2022-09-02) [2022-10-18]. http://www. nea. gov. cn/2022-09/02/c_1310658658. htm

[42] PAN Zhejun,YE Jianping,ZHOU Fubao,et al. CO2 storage in coal to enhance coalbed methane recovery:A review of field experiments in China[J]. International Geology Review,2018,60(5–6):754–776.

[43] WHITE C M,SMITH D H,JONES K L,et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery:A review[J]. Energy & Fuels,2005,19(3):659−724.

[44] 桑树勋,刘世奇,王文峰,等. 深部煤层CO2地质存储与煤层气强化开发有效性理论及评价[M]. 北京:科技出版社,2020.

[45] 鹿雯. 强化煤层气采收率的深部煤层封存CO2技术(CO2–ECBM)进展研究[J]. 环境科学与管理,2017,42(11):126−130.

LU Wen. Carbon dioxide sequestration in deep coal seams with enhanced coalbed methane recovery (CO2–ECBM):A review[J]. Environmental Science and Management,2017,42(11):126−130.

[46] 张松航,唐书恒,张守仁,等. 不同排采程度煤储层注CO2驱煤层气模拟评价[J]. 煤炭学报,2022,47(3):1275−1285.

ZHANG Songhang,TANG Shuheng,ZHANG Shouren,et al. Simulation and evaluation of enhanced coalbed methane recovery by CO2 storage in coal reservoirs with different drainage and production levels[J]. Journal of China Coal Society,2022,47(3):1275−1285.

[47] 叶建平,张兵,韩学婷,等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报,2016,41(1):149−155.

YE Jianping,ZHANG Bing,HAN Xueting,et al. Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):149−155.

[48] MAZZOTTI M,PINI R,STORTI G. Enhanced coalbed methane recovery[J]. The Journal of Supercritical Fluids,2009,47(3):619−627.

[49] 倪冠华,李钊,温永瓒,等. CO2注入下煤层气产出及储层渗透率演化规律[J]. 采矿与安全工程学报,2022,39(4):837−846.

NI Guanhua,LI Zhao,WEN Yongzan,et al. Evaluation of coalbed methane output and reservoir permeability under CO2 injection[J]. Journal of Mining & Safety Engineering,2022,39(4):837−846.

[50] REEVES S,OUDINOT A. The allison unit CO2–ECBM pilot:A reservoir and economic analysis[C]. International Coalbed Methane Symposium,2005.

[51] DAMEN K,FAAIJ A,VAN BERGEN F,et al. Identification of early opportunities for CO2 sequestration–worldwide screening for CO2–EOR and CO2–ECBM projects[J]. Energy,2005,30(10):1931−1952.

[52] GUNTER B. Alberta field pilot to test CO2 enhanced coalbed methane recovery[J]. Chemical Technology Bedfordview,2004:31–34.

[53] MCCRANK M J. Seismic detection and characterization of a CO2 flood in Ardley Coals,Alberta,Canada[D]. Graduate Studies,2009

[54] WAGENINGEN W F C V,MAAS J G. Reservoir simulation and interpretation of the RECOPOL ECBM pilot in Poland[C]. 2007 International Coalbed Methane Symposium,2007:72.

[55] FUJIOKA M,YAMAGUCHI S,NAKO M. CO2–ECBM field tests in the Ishikari Coal Basin of Japan[J]. International Journal of Coal Geology,2010,82(3):287−298.

[56] AMORINO S S,BENCINI R,CARA S S,et al. CO2 geological storage by ECBM techniques in the Sulcis area (SW Sardinia Region,Italy)[C]. Second International Conference on Clean Coal Technology,2005.

[57] 叶建平,冯三利,范志强,等. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究[J]. 石油学报,2007,28(4):77−80.

YE Jianping,FENG Sanli,FAN Zhiqiang,et al. Micro–pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin[J]. Acta Petrolei Sinica,2007,28(4):77−80.

[58] CONNELL L D,PAN Z,CAMILLERI M,et al. Description of a CO2 enhanced coal bed methane field trial using a multi–lateral horizontal well[J]. International Journal of Greenhouse Gas Control,2014,26:204−219.

[59] 叶建平,张兵,Sam Wong. 山西沁水盆地柿庄北区块3#煤层注入埋藏CO2提高煤层气采收率试验和评价[J]. 中国工程科学,2012,14(2):38−44.

YE Jianping,ZHANG Bing,WONG S. Test of and evaluation on elevation of coalbed methane recovery ratio by injecting and burying CO2 for 3# coal seam of north section of Shizhuang,Qinshui Basin,Shanxi[J]. Strategic Study of CAE,2012,14(2):38−44.

[60] ZHOU Fengde,HOU Wanwan,ALLINSON G,et al. A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in southeast Qinshui Basin,China[J]. International Journal of Greenhouse Gas Control,2013,19:26−40.

[61] 张守仁,桑树勋,吴见,等. CO2驱煤层气关键技术研发及应用[J]. 煤炭学报,2022,47(11):3952−3964.

ZHANG Shouren,SANG Shuxun,WU Jian,et al. Progress and application of key technologies for CO2 enhancing coalbed methane[J]. Journal of China Coal Society,2022,47(11):3952−3964.

[62] 李义曼,庞忠和,李捷,等. 二氧化碳咸水层封存和利用[J]. 科技导报,2012,30(19):70−79.

LI Yiman,PANG Zhonghe,LI Jie,et al. CO2 sequestration and utilization in deep saline aquifers[J]. Science & Technology Review,2012,30(19):70−79.

[63] 李琦,魏亚妮. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科技导报,2013,31(27):65−70.

LI Qi,WEI Yani. Progress in combination of CO2 geological storage and deep saline water recovery[J]. Science & Technology Review,2013,31(27):65−70.

[64] MICHAEL K,GOLAB A,SHULAKOVA V,et al. Geological storage of CO2 in saline aquifers:A review of the experience from existing storage operations[J]. International Journal of Greenhouse Gas Control,2010,4(4):659−667.

[65] 朱佩誉. CO2在咸水层的地质封存及应用进展[J]. 洁净煤技术,2021,27(增刊2):33−38.

ZHU Peiyu. Review on CO2 geological storage in saline formations[J]. Clean Coal Technology,2021,27(Sup.2):33−38.

[66] 周银邦,王锐,何应付,等. 咸水层CO2地质封存典型案例分析及对比[J/OL]. 油气地质与采收率,2022:1–6

2-11-19]. DOI:10.13673/j. cnki. cn37–1359/te. 202201028. ZHOU Yinbang,WANG Rui,HE Yingfu,et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J/OL]. Petroleum Geology and Recovery Efficiency,2022:1–6 [2022-11-19]. DOI:10. 13673/j. cnki. cn37–1359/te. 202201028.

[67] GUNTER W D,PERKINS E H,HUTCHEON I. Aquifer disposal of acid gases:Modelling of water–rock reactions for trapping of acid wastes[J]. Applied Geochemistry,2000,15(8):1085−1095.

[68] TORP T A,GALE J. Demonstrating storage of CO2 in geological reservoirs:The Sleipner and SACS projects[J]. Energy,2004,29(9–10):1361–1369.

[69] RINGROSE P S,MATHIESON A S,WRIGHT I W,et al. The in Salah CO2 storage project:Lessons learned and knowledge transfer[J]. Energy Procedia,2013,37:6226−6236.

[70] HANSEN O,GILDING D,NAZARIAN B,et al. Snøhvit:The history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm[J]. Energy Procedia,2013,37:3565−3573.

[71] KIKUTA K,HONGO S,TANASE D,et al. Field test of CO2 injection in Nagaoka,Japan[C]. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies,2005,2:1367–1372.

[72] HOVORKA S D,BENSON S M,DOUGHTY C,et al. Measuring permanence of CO2 storage in saline formations:The Frio experiment[J]. Environmental Geosciences,2006,13(2):105−121.

[73] 李琦,赵楠,刘兰翠,等. 澳大利亚Gorgon二氧化碳咸水层封存项目环境风险评价方法[J]. 环境工程,2019,37(2):22−26.

LI Qi,ZHAO Nan,LIU Lancui,et al. Environmental risk assessment method for geologic carbon dioxide storage:Case study of Australian Gorgon project[J]. Environmental Engineering,2019,37(2):22−26.

[74] 张冰,梁凯强,王维波,等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气,2019,6(3):15−20.

ZHANG Bing,LIANG Kaiqiang,WANG Weibo,et al. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas,2019,6(3):15−20.

[75] 谢健,张可霓,王永胜,等. 鄂尔多斯深部咸水层CO2地质封存效果评价[J]. 岩土力学,2016,37(1):166−174.

XIE Jian,ZHANG Keni,WANG Yongsheng,et al. Performance assessment of CO2 geological storage in deep saline aquifers in Ordos Basin,China[J]. Rock and Soil Mechanics,2016,37(1):166−174.

[76] 王锐,李阳,吕成远,等. 鄂尔多斯盆地深部咸水层CO2驱水与埋存潜力评价方法研究[J]. 非常规油气,2021,8(5):50−55.

WANG Rui,LI Yang,LYU Chengyuan,et al. Study on potential evaluation method on CO2 EWR and storage for deep saline layers in Ordos Basin[J]. Unconventional Oil & Gas,2021,8(5):50−55.

[77] 苏学斌,刘乃忠,杜志明. 我国CO2+O2地浸采铀工艺技术进展与前景[C]. 海口:全国铀矿大基地建设学术研讨会,2012.

[78] 曾圣男. 砂岩型铀矿地浸开采中的堵塞问题及解决方法[J]. 有色金属(矿山部分),2022,74(1):5−9.

ZENG Shengnan. The problem of plugging in in–situ leaching of sandstone–type uranium deposit and its solutions[J]. Nonferrous Metals (Mining Section),2022,74(1):5−9.

[79] 周义朋,沈照理,史维浚,等. 地浸采铀工艺分类方法的探讨[J]. 有色金属(冶炼部分),2015(1):37−41.

ZHOU Yipeng,SHEN Zhaoli,SHI Weijun,et al. Discussion on technology classification of in–situ leaching uranium mining[J]. Nonferrous Metals (Extractive Metallurgy),2015(1):37−41.

[80] EDWARDS C R,OLIVER A J. Uranium processing:A review of current methods and technology[J]. JOM,2000,52(9):12−20.

[81] 原渊,苏学斌,李建华,等. 世界地浸采铀矿山生产现状与进展[J]. 中国矿业,2018,27(增刊1):59−61.

YUAN Yuan,SU Xuebin,LI Jianhua,et al. Production status and development of the world in–situ leaching of uranium mines[J]. China Mining Magazine,2018,27(Sup.1):59−61.

[82] 苏学斌,李喜龙,刘乃忠,等. 环境友好型地浸采铀工艺技术与应用[J]. 中国矿业,2016,25(9):97−100.

SU Xuebin,LI Xilong,LIU Naizhong,et al. Application of the environment friendly technology of in−situ leaching of uranium[J]. China Mining Magazine,2016,25(9):97−100.

[83] UNDERHILL D H. In situ leach uranium mining in the United States of America:Past,present and future[J]. Uranium in Situ Leaching,1992.

[84] LARSON W C. Uranium in situ leach mining in the United States[M]. Department of the Interior,Bureau of Mines,1978.

[85] 陶峰,张传飞,冯国平,等. 某砂岩型铀矿CO2+O2地浸采铀试验[J]. 有色金属(冶炼部分),2022(6):56−61.

TAO Feng,ZHANG Chuanfei,FENG Guoping,et al. CO2+O2 in–situ leaching of uranium from a sandstone type uranium deposit[J]. Nonferrous Metals (Extractive Metallurgy),2022(6):56−61.

[86] 杜志明,牛学军,苏学斌,等. 内蒙古某铀矿床CO2+O2地浸采铀工业性试验[J]. 铀矿冶,2013,32(1):1−4.

DU Zhiming,NIU Xuejun,SU Xuebin,et al. CO2+O2 in–situ leaching test of one uranium deposit in Inner Mongolia[J]. Uranium Mining and Metallurgy,2013,32(1):1−4.

[87] 闫纪帆,张渤,刘佳斌,等. 某CO2+O2地浸采铀矿山采区浸出效果研究[J]. 铀矿冶,2020,39(3):185−190.

YAN Jifan,ZHANG Bo,LIU Jiabin,et al. Study on leaching effect of in–situ leaching uranium mine by CO2+O2[J]. Uranium Mining and Metallurgy,2020,39(3):185−190.

[88] 吉宏斌,周义朋,孙占学,等. 蒙其古尔铀矿床CO2+O2地浸浸出过程分析与探讨[J]. 有色金属(冶炼部分),2018(3):55−59.

JI Hongbin,ZHOU Yipeng,SUN Zhanxue,et al. Analysis of and discussion on CO2+O2 in–situ leaching of uranium process at Mengqiguer Deposit[J]. Nonferrous Metals (Extractive Metallurgy),2018(3):55−59.

[89] LIU Shezhan,YUAN Lei,ZHAO Changzhong,et al. A review of research on the dispersion process and CO2 enhanced natural gas recovery in depleted gas reservoir[J]. Journal of Petroleum Science and Engineering,2022,208:109682.

[90] HAMZA A,HUSSEIN I A,AL–MARRI M J,et al. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs:A review[J]. Journal of Petroleum Science and Engineering,2021,196:107685.

[91] 卢义玉,周军平,鲜学福,等. 超临界CO2强化页岩气开采及地质封存一体化研究进展与展望[J]. 天然气工业,2021,41(6):60−73.

LU Yiyu,ZHOU Junping,XIAN Xuefu,et al. Research progress and prospect of the integrated supercritical CO2 enhanced shale gas recovery and geological sequestration[J]. Natural Gas Industry,2021,41(6):60−73.

[92] 杜玉昆,王瑞和,倪红坚,等. 超临界二氧化碳射流破岩试验[J]. 中国石油大学学报(自然科学版),2012,36(4):93−96.

DU Yukun,WANG Ruihe,NI Hongjian,et al. Rock−breaking experiment with supercritical carbon dioxide jet[J]. Journal of China University of Petroleum (Edition of Natural Science),2012,36(4):93−96.

[93] BROWN D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]. California:Proceedings of the Twenty–Fifth Workshop on Geothermal Reservoir Engineering,2000:233–238.

[94] LI Qi,WEI Yani,LIU Guizhen,et al. CO2–EWR:A cleaner solution for coal chemical industry in China[J]. Journal of Cleaner Production,2015,103:330−337.

[95] 俞凯,刘伟,陈祖华,等. 陆相低渗透油藏CO2混相驱技术[M]. 北京:中国石化出版社,2016.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.