•  
  •  
 

Coal Geology & Exploration

Authors

YUE Hangyu, Center for Geophysical Survey, China Geological Survey, Langfang 065000, China; Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; National Center for Geological Exploration Technology, Langfang 065000, China; School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, ChinaFollow
WANG Kai, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; National Center for Geological Exploration Technology, Langfang 065000, ChinaFollow
WANG Xiaojiang, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; National Center for Geological Exploration Technology, Langfang 065000, China
ZHANG Baowei, Center for Geophysical Survey, China Geological Survey, Langfang 065000, China; Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang 065000, China; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; National Center for Geological Exploration Technology, Langfang 065000, China
ZHANG Kai, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; National Center for Geological Exploration Technology, Langfang 065000, China

Abstract

As an effective method to accurately reveal the deep geological structures and tectonic features of the Earth, deep seismic reflection profiling has been increasingly applied to the exploration of the continental and oceanic crusts, as well as the upper mantle of the lithosphere, making it internationally recognized pioneer technique for deep Earth exploration. This study examined the deep seismic reflection profile spanning across the Xiong’an New Area in Hebei Province, aiming to reveal the crustal structure and tectonic features of the study area. Key findings are as follows: (1) The crust in the study area can be divided into the upper and the lower crusts, with average thicknesses of approximately 18 km and 16 km, respectively and an average Moho depth of around 34 km. (2) In the upper crust, the sedimentary strata above the crystalline basement exhibit high stratification, strong reflected energy, and intricate structural characteristics. Faults are well-developed in the upper crust, exhibiting various morphologies and dislocation depths, with no deep-seated faults. The major faults encompass the Niudong, Niubei, Rongdong, Rongcheng, and Rongxi faults and the Taihang Mountain piedmont fault from southeast to northwest. (3) In the lower crust, the northwestern and southeastern portions of the deep seismic reflection profile are subjected to different tectonic stresses. Consequently, the northwestern and central segments manifest relatively simple seismic reflection features, reflecting relatively stable overall tectonics in the Xiong’an New Area. In contrast, the southeastern segment of the profile exhibits pronounced imbricate reflections, mirroring the lateral heterogeneity and local activity of the lower crust. These results will provide reliable data support for the overall planning and construction of the Xiong’an New Area and for the building of geological information platform Transparent Xiong’an, which involves survey depths of 10 000 m.

Keywords

Xiong’an New Area and its periphery, deep seismic reflection, crust, fine-scale structure, tectonic feature

DOI

10.12363/issn.1001-1986.23.10.0611

Reference

[1] MULLICK N,BUSKE S,HRUBCOVA P,et al. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe[J]. Tectonophysics,2015,647/648:105–111.

[2] LYU Qingtian,YAN Jiayong,SHI Danian,et al. Reflection seismic imaging of the Lujiang–Zongyang volcanic basin,Yangtze Metallogenic Belt:An insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics,2013,606:60−77.

[3] KHOMSI S,ROURE F,KHELIL M,et al. A review of the crustal architecture and related pre–salt oil/gas objectives of the eastern Maghreb Atlas and Tell:Need for deep seismic reflection profiling[J]. Tectonophysics,2019,766:232−248.

[4] 高锐,齐蕊,黄兴富,等. 青藏高原东北缘祁连山中部精细地壳结构研究[J]. 地球物理学报,2022,65(8):2857−2871.

GAO Rui,QI Rui,HUANG Xingfu,et al. Disclosure of high–resolution crustal structure beneath the central region of Qilian Shan,northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,2022,65(8):2857−2871.

[5] 朴青峰,张宝金,张如伟,等. 根据深反射地震资料识别南海北部洋陆过渡带[J]. 地球物理学报,2022,65(7):2546−2559.

PIAO Qingfeng,ZHANG Baojin,ZHANG Ruwei,et al. Continent–ocean transition in the northern South China Sea by high–quality deep reflection seismic data[J]. Chinese Journal of Geophysics,2022,65(7):2546−2559.

[6] CALVERT A J,TALINGA D. Deep seismic reflection constraints on Paleogene crustal extension in the south–central Intermontane belt,British Columbia[J]. Canadian Journal of Earth Sciences,2014,51:393−406.

[7] XU Ming,LI Yalin,HOU Hesheng,et al. Structural characteristics of the Yilan–Yitong and Dunhua–Mishan faults as northern extensions of the Tancheng–Lujiang Fault Zone:New deep seismic reflection results[J]. Tectonophysics,2017,706/707:35–45.

[8] BOOTE S K,KNAPP J H,MUELLER P A. Preserved Neoproterozoic continental collision in southeastern North America:The Brunswick Suture zone and Osceola continental margin arc[J]. Tectonics,2018,37:305−321.

[9] GOLEBY B R,HUSTON D L,LYONS P,et al. The Tanami deep seismic reflection experiment:An insight into gold mineralization and Paleoproterozoic collision in the North Australian Craton[J]. Tectonophysics,2009,472:169−182.

[10] 酆少英,李秋生,邓小娟,等. 深反射大炮揭示的青藏高原侧向碰撞带地壳骨架结构[J]. 地球物理学报,2020,63(3):828−839.

FENG Shaoying,LI Qiusheng,DENG Xiaojuan,et al. Crustal skeleton structure of the lateral collision zone of the Qinghai–Tibet Plateau revealed by large–shot set of deep–reflecting profiling[J]. Chinese Journal of Geophysics,2020,63(3):828−839.

[11] GIBSON G M,MEIXNER A J,WITHNALL I W,et al. Basin architecture and evolution in the Mount Isa mineral province,northern Australia:Constraints from deep seismic reflection profiling and implications for ore genesis[J]. Ore Geology Reviews,2016,76:414−441.

[12] 吕庆田,董树文,汤井田,等. 多尺度综合地球物理探测:揭示成矿系统、助力深部找矿:长江中下游深部探测(SinoProbe–03)进展[J]. 地球物理学报,2015,58(12):4319−4343.

LYU Qingtian,DONG Shuwen,TANG Jingtian,et al. Multi–scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depth:A synthesis from SinoProbe–03[J]. Chinese Journal of Geophysics,2015,58(12):4319−4343.

[13] 梁锋,吕庆田,严加永,等. 宁芜盆地深部地壳结构和岩浆侵入体形态特征及其对成矿的启示[J]. 地学前缘,2017,24(5):138−148.

LIANG Feng,LYU Qingtian,YAN Jiayong,et al. Crustal structure and shape of deep magma intrusion,and their implications for mineralization in Ningwu Basin[J]. Earth Science Frontiers,2017,24(5):138−148.

[14] FU Guangyu,SU Xiaoning,SHE Yawen,et al. Evidence for normal and deep–buried features of the Longquan Shan fault zone at the eastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences,2019,179:56−64.

[15] 酆少英,刘保金,邓小娟,等. 南汀河西支断裂深浅构造特征:来自深地震反射剖面的证据[J]. 地球物理学报,2017,60(10):3863−3871.

FENG Shaoying,LIU Baojin,DENG Xiaojuan,et al. Shallow and deep structural characteristics of the west branch of the Nantinghe fault:Evidence from deep seismic reflection profiling[J]. Chinese Journal of Geophysics,2017,60(10):3863−3871.

[16] 卢占武,高锐,李洪强,等. 深反射地震数据揭示的拉萨地体北部到羌塘地体南部地壳厚度的变化[J]. 中国地质,2016,43(5):1679−1687.

LU Zhanwu,GAO Rui,LI Hongqiang,et al. Crustal thickness variation from northern Lhasa terrane to southern Qiangtang terrane revealed by deep seismic reflection data[J]. Geology in China,2016,43(5):1679−1687.

[17] STEER D N,BROWN L D,KNAPP J H,et al. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston Basin[J]. Geophysics,1996,61(1):211−221.

[18] COOK F A,CLOWES R M,SNYDER D B,et al. Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling[J]. Tectonics,2004,23:TC2010.

[19] EVENCHICK C A,GABRIELSE H,SNYDER D. Crustal structure and lithology of the northern Canadian Cordillera:Alternative interpretations of SNORCLE seismic reflection lines 2a and 2b[J]. Canadian Journal of Earth Sciences,2005,42:1149−1161.

[20] KRÖNER A,BROWN L. Structure,composition and evolution of the south Indian and Sri Lankan granulite terrains from deep seismic profiling and other geophysical and geological investigations:A LEGENDS initiative[J]. Gondwana Research,2005,8(3):317−335.

[21] MALINOWSKI M,GUTERCH A,NARKIEWICZ M,et al. Deep seismic reflection profile in Central Europe reveals complex pattern of Paleozoic and Alpine accretion at the East European Craton margin[J]. Geophysical Research Letters,2013,40:3841−3846.

[22] 岳航羽,王凯,张杰,等. 雄安新区及周边深反射地震高精度成像技术[J]. 石油地球物理勘探,2022,57(4):855−869.

YUE Hangyu,WANG Kai,ZHANG Jie,et al. High–precision imaging technology of deep reflection seismic in Xiong’an New Area and its surroundings[J]. Oil Geophysical Prospecting,2022,57(4):855−869.

[23] ZHAO Wenjin,NELSON K D,Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature,1993,366(6455):557−559.

[24] 赵文津,吴珍汉,史大年,等. 国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究[J]. 地球学报,2008,29(3):328−342.

ZHAO Wenjin,WU Zhenhan,SHI Danian,et al. Comprehensive deep profiling of Tibetan Plateau in the INDEPTH project[J]. Acta Geoscientica Sinica,2008,29(3):328−342.

[25] 董树文,李廷栋,陈宣华,等. 我国深部探测技术与实验研究进展综述[J]. 地球物理学报,2012,55(12):3884−3901.

DONG Shuwen,LI Tingdong,CHEN Xuanhua,et al. Progress of deep exploration in mainland China:A review[J]. Chinese Journal of Geophysics,2012,55(12):3884−3901.

[26] 董树文,李廷栋,高锐,等. 我国深部探测技术与实验研究与国际同步[J]. 地球学报,2013,34(1):7−23.

DONG Shuwen,LI Tingdong,GAO Rui,et al. Progress of SinoProbe–deep exploration in China 2008–2012[J]. Acta Geoscientica Sinica,2013,34(1):7−23.

[27] 董树文,李廷栋,陈宣华,等. 深部探测揭示中国地壳结构、深部过程与成矿作用背景[J]. 地学前缘,2014,21(3):201−225.

DONG Shuwen,LI Tingdong,CHEN Xuanhua,et al. SinoProbe revealed crustal structures,deep processes,and metallogenic background within China continent[J]. Earth Science Frontiers,2014,21(3):201−225.

[28] GAO Rui,CHEN Chen,LU Zhanwu,et al. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling[J]. Tectonophysics,2013,606:160−170.

[29] 吕庆田,黄东定,侯增谦,等. 铜陵矿集区地壳结构的深地震反射成像[J]. 矿床地质,2002,21(增刊1):1173−1176.

LYU Qingtian,HUANG Dongding,HOU Zengqian,et al. Deep seismic reflection image of crustal structure in Tongling ore district[J]. Mineral Deposits,2002,21(Sup.1):1173−1176.

[30] 岳航羽,王小江,王磊,等. 陆地地区深地震反射剖面技术的研究现状与展望[J]. 煤田地质与勘探,2023,51(6):121−148.

YUE Hangyu,WANG Xiaojiang,WANG Lei,et al. Deep seismic reflection profiling technology in land areas:A review and prospects[J]. Coal Geology & Exploration,2023,51(6):121−148.

[31] LU Zhanwu,GAO Rui,LI Hongqiang,et al. Variation of Moho depth across Bangong–Nujiang Suture in Central Tibet:Results from deep seismic reflection data[J]. International Journal of Geosciences,2015,6:821−830.

[32] LI Hongqiang,GAO Rui,LI Wenhui,et al. The Mabja dome structure in southern Tibet revealed by deep seismic reflection data and its tectonic implications[J]. Journal of Geophysical Research:Solid Earth,2021,126:e2020JB020265.

[33] GAO Rui,WANG Haiyan,ZENG Lingsen,et al. The crust structures and the connection of the Songpan block and West Qinling orogen revealed by the Hezuo–Tangke deep seismic reflection profiling[J]. Tectonophysics,2014,634:227−236.

[34] HUANG Xingfu,XU Xiao,GAO Rui,et al. Shortening of lower crust beneath the NE Tibetan Plateau[J]. Journal of Asian Earth Sciences,2020,198:104313.

[35] 卢占武,高锐,KLEMPERER S,等. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘,2022,29(2):210−217.

LU Zhanwu,GAO Rui,KLEMPERER S,et al. Crustal–scale duplexing beneath the Yarlung Zangbo Suture in the western Himalaya[J]. Earth Science Frontiers,2022,29(2):210−217.

[36] 刘保金,沈军,张先康,等. 深地震反射剖面揭示的天山北缘乌鲁木齐坳陷地壳结构和构造[J]. 地球物理学报,2007,50(5):1464−1472.

LIU Baojin,SHEN Jun,ZHANG Xiankang,et al. The crust structures and tectonics of Ürumqi depression revealed by deep seismic reflection profile in the northern margin of Tianshan mountains[J]. Chinese Journal of Geophysics,2007,50(5):1464−1472.

[37] 侯贺晟,高锐,贺日政,等. 西南天山–塔里木盆地结合带浅深构造关系:深地震反射剖面的初步揭露[J]. 地球物理学报,2012,55(12):4116−4125.

HOU Hesheng,GAO Rui,HE Rizheng,et al. Shallow–deep tectonic relationship for the junction belt of western part of South Tianshan and Tarim Basin:Revealed from preliminary processed deep seismic reflection profile[J]. Chinese Journal of Geophysics,2012,55(12):4116−4125.

[38] 方盛明,赵成彬,柴炽章,等. 银川断陷盆地地壳结构与构造的地震学证据[J]. 地球物理学报,2009,52(7):1768−1775.

FANG Shengming,ZHAO Chengbin,CHAI Chizhang,et al. Seismic evidence of crustal structures in the Yinchuan faulted basin[J]. Chinese Journal of Geophysics,2009,52(7):1768−1775.

[39] 酆少英,高锐,龙长兴,等. 银川地堑地壳挤压应力场:深地震反射剖面[J]. 地球物理学报,2011,54(3):692−697.

FENG Shaoying,GAO Rui,LONG Changxing,et al. The compressive stress field of Yinchuan garben:Deep seismic reflection profile[J]. Chinese Journal of Geophysics,2011,54(3):692−697.

[40] HUANG Xingfu,FENG Shaoying,GAO Rui,et al. High–resolution crustal structure of the Yinchuan basin revealed by deep seismic reflection profiling:Implications for deep processes of basin[J]. Earthquake Science,2016,29(2):83−92.

[41] 冯杨洋,于常青,范柱国,等. 从反射地震剖面中认识芦山地区的地壳精细结构和构造[J]. 地球物理学报,2016,59(9):3248−3259.

FENG Yangyang,YU Changqing,FAN Zhuguo,et al. Fine crustal structure of the Lushan area derived from seismic reflection profiling[J]. Chinese Journal of Geophysics,2016,59(9):3248−3259.

[42] 王海燕,高锐,卢占武,等. 四川盆地深部地壳结构:深地震反射剖面探测[J]. 地球物理学报,2017,60(8):2913−2923.

WANG Haiyan,GAO Rui,LU Zhanwu,et al. Deep crustal structure in Sichuan basin:Deep seismic reflection profiling[J]. Chinese Journal of Geophysics,2017,60(8):2913−2923.

[43] WU You,GUO Xiaoyu,GAO Rui,et al. Deep seismic reflection insights into syn–Rodinian crustal recycling[J]. Precambrian Research,2021,354:106075.

[44] LYU Qingtian,SHI Danian,LIU Zhendong,et al. Crustal structure and geodynamics of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas:Insights from deep seismic reflection profiling[J]. Journal of Asian Earth Sciences,2015,114:704−716.

[45] 吕庆田,刘振东,董树文,等. “长江深断裂带”的构造性质:深地震反射证据[J]. 地球物理学报,2015,58(12):4344−4359.

LYU Qingtian,LIU Zhendong,DONG Shuwen,et al. The nature of Yangtze River deep fault zone:Evidence from deep seismic data[J]. Chinese Journal of Geophysics,2015,58(12):4344−4359.

[46] 符伟,侯贺晟,高锐,等. “松科二井”邻域岩石圈精细结构特征及动力学环境:深地震反射剖面的揭示[J]. 地球物理学报,2019,62(4):1349−1361.

FU Wei,HOU Hesheng,GAO Rui,et al. Fine structure of the lithosphere beneath the Well SK–2 and its adjacent:Revealed by deep seismic reflection profile[J]. Chinese Journal of Geophysics,2019,62(4):1349−1361.

[47] 王建民,杨宝俊,李占林,等. 松辽盆地东缘域地壳结构及其地质意义:深反射地震[J]. 地球物理学报,2020,63(9):3478−3490.

WANG Jianmin,YANG Baojun,LI Zhanlin,et al. Crustal structure between the eastern margin of the Songliao Basin and its geological implication:Deep seismic reflection[J]. Chinese Journal of Geophysics,2020,63(9):3478−3490.

[48] FU Wei,HOU Hesheng,GAO Rui,et al. Lithospheric structures of the central Solonker–Xar Moron–Changchun–Yanji Suture (Inner Mongolia) revealed by a deep seismic reflection profile[J]. Tectonophysics,2021,817:229043.

[49] 张先康,赵金仁,刘国华,等. 三河–平谷8. 0级大震区震源细结构的深地震反射探测研究[J]. 中国地震,2002,18(4):326–336.

ZHANG Xiankang,ZHAO Jinren,LIU Guohua,et al. Study on fine crustal structure of the Sanhe–Pinggu earthquake (M8.0) region by deep seismic reflection profiling[J]. Earthquake Research in China,2002,18(4):326–336.

[50] 赵金仁,张先康,张成科,等. 利用宽角反射/折射和深反射探测剖面揭示三河–平谷大震区深部结构特征[J]. 地球物理学报,2004,47(4):646−653.

ZHAO Jinren,ZHANG Xiankang,ZHANG Chengke,et al. Deep structural features of the Sanhe–Pinggu great earthquake area imaged by wide–angle and deep seismic reflection profiling[J]. Chinese Journal of Geophysics,2004,47(4):646−653.

[51] 刘保金,胡平,孟勇奇,等. 北京地区地壳精细结构的深地震反射剖面探测研究[J]. 地球物理学报,2009,52(9):2264−2272.

LIU Baojin,HU Ping,MENG Yongqi,et al. Research on fine crustal structure using deep seismic reflection profile in Beijing region[J]. Chinese Journal of Geophysics,2009,52(9):2264−2272.

[52] 赵成彬,刘保金,姬计法,等. 北京南部地壳精细结构深地震反射探测研究[J]. 地球物理学报,2013,56(4):1168−1176.

ZHAO Chengbin,LIU Baojin,JI Jifa,et al. Fine crustal structure in the south of Beijing revealed by deep seismic reflection profiling[J]. Chinese Journal of Geophysics,2013,56(4):1168−1176.

[53] 闫成国,曹井泉,陈宇坤,等. 深地震反射剖面揭示的天津地区张渤带地壳精细结构[J]. 地球物理学报,2020,63(12):4431−4439.

YAN Chengguo,CAO Jingquan,CHEN Yukun,et al. Fine crustal structures of Zhangjiakou–Bohai tectonic zone in Tianjin area revealed by a deep seismic reflection profile[J]. Chinese Journal of Geophysics,2020,63(12):4431−4439.

[54] 刘保金,曲国胜,孙铭心,等. 唐山地震区地壳结构和构造:深地震反射剖面结果[J]. 地震地质,2011,33(4):901−912.

LIU Baojin,QU Guosheng,SUN Mingxin,et al. Crustal structures and tectonics of Tangshan earthquake area:Results from deep seismic reflection profiling[J]. Seismology and Geology,2011,33(4):901−912.

[55] 顾梦林,刘保金,赵成斌,等. 邢台地区深浅构造耦合关系的探测研究和几个值得思考的问题[J]. 地震学报,2000,22(4):385−394.

GU Menglin,LIU Baojin,ZHAO Chengbin,et al. Study on the coupled relationship between deep and shallow structures of Xingtai area and some significant questions[J]. Acta Seismologica Sinica,2000,22(4):385−394.

[56] WANG Chunyong,WU Qingju,DUAN Yonghong,et al. Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in North China[J]. Science China Earth Sciences,2017,60(5):821−857.

[57] 王凯,张杰,白大为,等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质,2021,48(5):1453−1468.

WANG Kai,ZHANG Jie,BAI Dawei,et al. Geothermal–geological model of Xiong’an New Area:Evidence from geophysics[J]. Geology in China,2021,48(5):1453−1468.

[58] 马岩,张保建,闫金凯,等. 雄安新区深部储热构造探测研究与地热井优选技术[J]. 地球学报,2022,43(5):699−710.

MA Yan,ZHANG Baojian,YAN Jinkai,et al. Deep geothermal reservoir structure detection and geothermal well optimization technology in Xiong’an New Area[J]. Acta Geoscientica Sinica,2022,43(5):699−710.

[59] LI Hongqiang,HUANG Xingfu,GAO Rui,et al. Imaging a decratonized lithosphere:A case of the eastern North China Craton[J]. Geophysical Research Letters,2022,49:e2022GL099484.

[60] 欧洋,张杰,冯杰,等. 地质–地球物理三维可视化建模及其应用:以雄安新区为例[J]. 华东地质,2022,43(3):286−296.

OU Yang,ZHANG Jie,FENG Jie,et al. 3D visualization modeling of geological and geophysical data and its application:A case study of Xiong’an New Area[J]. East China Geology,2022,43(3):286−296.

[61] 王凯. 基于综合地球物理探测的雄安新区地热地质结构及深部热源机制研究[D]. 长春:吉林大学,2022.

WANG Kai. Study on the geothermal geological structure and deep geothermal source mechanism of Xiong’an New Area based on comprehensive geophysical exploration[D]. Changchun:Jilin University,2022.

[62] 何登发,单帅强,张煜颖,等. 雄安新区的三维地质结构:来自反射地震资料的约束[J]. 中国科学:地球科学,2018,48(9):1207−1222.

HE Dengfa,SHAN Shuaiqiang,ZHANG Yuying,et al. 3–D geologic architecture of Xiong’an New Area:Constraints from seismic reflection data[J]. Science China Earth Sciences,2018,48(9):1207−1222.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.