•  
  •  
 

Coal Geology & Exploration

Authors

ZHANG Wen, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, ChinaFollow
ZHANG Lei, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
HUANG Li, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
LI Xiaogang, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, ChinaFollow
SHI Shi, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
SUN Xuedong, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
ZHAO Longmei, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
DAI Ruirui, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
TONG Jiangnan, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China

Abstract

In the 2D seismic area, the reservoir with a low well control degree, frontal sedimentary of the meandering river's delta and other complex lithology reservoirs, the drilling ratio of reservoirs is low when horizontal wells are implemented. The application of the geosteering technology combining the iterative updating of 3D geologic models and geologic-engineering integration has been gradually extensive. Multiple tight sandstone reservoirs, such as the Beichagou sandstone in the Shan2 3 Submember of the Shanxi Formation, develop in the Neopaleozoic coal measure at the southeastern margin of the Ordos Basin. Among them, the DJ-P37 bore field of the Daning–Jixian Block has the thin sandstone bed, complex longitudinal lithology and fast horizontal change, with the micro-amplitude structure developing; in this bore field, there is generally no departure well, and the end well is in a long distance, resulting in difficult horizontal well steering. In order to enhance the drilling effects of the horizontal wells in the areas with a low degree of exploration, study is implemented by means of marker bed identification and determination, comparison between the coal bed and rock stratum, accurate analysis and completion of data, identification of reservoir top and bottom characteristics, etc. Firstly, the methods for quickly differentiating coal beds from carbonaceous mudstone in the study area were summarized, so as to solve the problem of difficult field lithology identification and build the stratigraphic framework in the study area. Secondly, on the basis of the meticulous stratigraphic correlation of multiple logging data, seismic data and geological data, one Class Ⅰ marker bed and three Class Ⅱ marker beds were determined; two Class Ⅱ marker beds were further determined in the Shan23 Submember. Finally, the technology of landing site control, the technology of improving the drilling ratio in horizontal sections and the method of determining whether a bit penetrates reservoirs were proposed, forming the geosteering technology for horizontal wells in delta’s frontal subfacies reservoirs. The technology was applied in the DJ-P37 bore field, and accumulatively 34 wells were completed, with 78.30% of the average drilling ratio in the sandstone, providing good drilling effects. The application can provide technological references for the coal measure horizontal well drilling in similar areas.

Keywords

geosteering technology for horizontal well, coal measure tight gas, 3D geologic model, southeastern margin of the Ordos Basin

DOI

10.12363/issn.1001-1986.21.12.0819

Reference

[1] 马新华,贾爱林,谭健,等. 中国致密砂岩气开发工程技术与实践[J]. 石油勘探与开发,2012,39(5):572−579

MA Xinhua,JIA Ailin,TAN Jian,et al. Tight sand gas development technologies and practices in China[J]. Petroleum Exploration and Development,2012,39(5):572−579

[2] 李进步,付斌,赵忠军,等. 苏里格气田致密砂岩气藏储层表征技术及其发展展望[J]. 天然气工业,2015,35(12):35−41

LI Jinbu,FU Bin,ZHAO Zhongjun,et al. Characterization technology for tight sandstone gas reservoirs in the Sulige gas field,Ordos Basin,and its development prospect[J]. Natural Gas Industry,2015,35(12):35−41

[3] 贾爱林,郭智,郭建林,等. 中国储层地质模型30年[J]. 石油学报,2021,42(11):1506−1515

JIA Ailin,GUO Zhi,GUO Jianlin,et al. Research achievements on reservoir geological modeling of China in the past three decades[J]. Acta Petrolei Sinica,2021,42(11):1506−1515

[4] 雷群,贾爱林,何东博,等. 致密气勘探开发技术[M]. 北京:石油工业出版社,2019.

[5] 梁兴,徐进宾,刘成,等. 昭通国家级页岩气示范区水平井地质工程一体化导向技术应用[J]. 中国石油勘探,2019,24(2):226−232

LIANG Xing,XU Jinbin,LIU Cheng,et al. Geosteering technology based on geological and engineering integration for horizontal wells in Zhaotong national shale gas demonstration zone[J]. China Petroleum Exploration,2019,24(2):226−232

[6] 吴宗国,梁兴,董健毅,等. 三维地质导向在地质工程一体化实践中的应用[J]. 中国石油勘探,2017,22(1):89−98

WU Zongguo,LIANG Xing,DONG Jianyi,et al. Application of 3D geosteering in geology−engineering integration practice[J]. China Petroleum Exploration,2017,22(1):89−98

[7] 梁卫卫,党海龙,崔鹏兴,等. 三维地质建模技术在致密砂岩油藏水平井开发中的应用:以鄂尔多斯盆地S区块为例[J]. 新疆石油地质,2020,41(5):616−621

LIANG Weiwei,DANG Hailong,CUI Pengxing,et al. Application of 3D geological modeling in horizontal well development of tight sandstone oil reservoirs:A case study of block S in Ordos Basin[J]. Xinjiang Petroleum Geology,2020,41(5):616−621

[8] 陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术,2021,49(1):113−120

LU Ziqing. Geosteering methods of a dynamic geological model based on Kalman Filter[J]. Petroleum Drilling Techniques,2021,49(1):113−120

[9] 中国石油勘探与生产分公司,斯伦贝谢中国公司. 地质导向与旋转导向技术应用与发展[M]. 北京:石油工业出版社,2012.

[10] 费世祥,杜玉斌,王一军,等. 致密砂岩气藏水平井多学科综合导向新技术:以鄂尔多斯盆地为例[J]. 天然气工业,2019,39(12):58−65

FEI Shixiang,DU Yubin,WANG Yijun,et al. A new multi–disciplinary integrated steering technology for horizontal wells in tight sandstone gas reservoirs:A case study of the Ordos Basin[J]. Natural Gas Industry,2019,39(12):58−65

[11] 刘国强. 非常规油气时代的测井采集技术挑战与对策[J]. 中国石油勘探,2021,26(5):24−37

LIU Guoqiang. Challenges and countermeasures of well logging data acquisition technology in unconventional petroleum exploration and development[J]. China Petroleum Exploration,2021,26(5):24−37

[12] 何贵松,何希鹏,万静雅,等. 低勘探程度区页岩气水平井地质导向方法与应用:以渝东南地区LY1HF井为例[J]. 科学技术与工程,2019,19(27):124−133

HE Guisong,HE Xipeng,WAN Jingya,et al. Method and application of geo–steering technique of shale gas horizontal wells in the low exploration–degree area:A case from well LY1HF in southeastern Chongqing[J]. Science Technology and Engineering,2019,19(27):124−133

[13] 李国斌,张亚军,谢天峰,等. 煤系地层致密砂岩气甜点区地震逐级预测:以鄂尔多斯盆地东南缘下二叠统山西组23亚段为例[J]. 天然气工业,2020,40(5):34−42

LI Guobin,ZHANG Yajun,XIE Tianfeng,et al. Seismic stepped prediction technology for tight sandstone gas sweet spot in coal measure strata:A case study of the Submember 23 of the Lower Permian Shanxi Formation along the southeastern margin of the Ordos Basin[J]. Natural Gas Industry,2020,40(5):34−42

[14] 郭乐乐,李忠百,张稳,等. 鄂尔多斯盆地大宁–吉县区块主力致密砂岩储层孔隙结构分析[J]. 天然气工业,2018,38(增刊1):18−23

GUO Lele,LI Zhongbai,ZHANG Wen,et al. The pore structure analysis of main tight sandstone reservoirs in Daning–Jixian area,Ordos Basin[J]. Natural Gas Industry,2018,38(Sup.1):18−23

[15] 李文厚,张倩,李克永,等. 鄂尔多斯盆地及周缘地区晚古生代沉积演化[J]. 古地理学报,2021,23(1):39−52

LI Wenhou,ZHANG Qian,LI Keyong,et al. Sedimentary evolution of the Late Paleozoic in Ordos Basin and its adjacent areas[J]. Journal of Palaeogeography(Chinese Edition),2021,23(1):39−52

[16] 陈洪德,李洁,张成弓,等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报,2011,27(8):2213−2229

CHEN Hongde,LI Jie,ZHANG Chenggong,et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica,2011,27(8):2213−2229

[17] 肖建新,孙粉锦,何乃祥,等. 鄂尔多斯盆地二叠系山西组及下石盒子组盒8段南北物源沉积汇水区与古地理[J]. 古地理学报,2008,10(4):341−354

XIAO Jianxin,SUN Fenjin,HE Naixiang,et al. Permian Shanxi Formation and Member 8 of Xiashihezi Formation in Ordos Basin:Palaeogeography and catchment area for sediments derived from north and south provenances[J]. Journal of Palaeogeography,2008,10(4):341−354

[18] 于兴河,王香增,王念喜,等. 鄂尔多斯盆地东南部上古生界层序地层格架及含气砂体沉积演化特征[J]. 古地理学报,2017,19(6):935−954

YU Xinghe,WANG Xiangzeng,WANG Nianxi,et al. Sequence stratigraphic framework and sedimentary evolution characteristics of gas–bearing sandbody in the Upper Paleozoic in southeastern Ordos Basin[J]. Journal of Palaeogeography,2017,19(6):935−954

[19] 王海军,刘善德,马良,等. 面向智能化开采的矿井煤岩层综合对比技术[J]. 煤田地质与勘探,2022,50(2):24−38

WANG Haijun,LIU Shande,MA Liang,et al. Comprehensive correlation technology of coal and rock layers in mines for intelligent mining[J]. Coal Geology & Exploration,2022,50(2):24−38

[20] 仲米虹,李乐忠,唐武. 煤系地层沉积旋回分析及煤层对比研究在Galilee盆地中的应用[J]. 测井技术,2015,39(1):99−105

ZHONG Mihong,LI Lezhong,TANG Wu. Application of sedimentary cycle analysis and contrast in coal–bearing strata of Galilee Basin[J]. Well Logging Technology,2015,39(1):99−105

[21] 舒建生,马良,贾立龙. 多煤层对比方法优化研究[J]. 煤田地质与勘探,2019,47(6):51−58

SHU Jiansheng,MA Liang,JIA Lilong. Optimization study on correlation method of multiple coal seams[J]. Coal Geology & Exploration,2019,47(6):51−58

[22] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 中国煤炭分类:GB/T 5751—2009[S]. 北京:中国标准出版社,2009.

[23] 国家能源局. 烃源岩地球化学评价方法:SY/T 5735—2019[S]. 北京:石油工业出版社,2019:1–6.

[24] 中华人民共和国自然资源部. 含煤岩系钻孔岩心描述:DZ/T 0002—2017[S]. 北京:中国标准出版社,2017:1–74.

[25] 薛良喜. 鄂尔多斯盆地东北缘本溪组–山西组自然伽马高异常的成因及其地质意义[D]. 徐州:中国矿业大学,2016.

XUE Liangxi. The genesis analysis and geological significance of high natural Gamma anomaly from Benxi to Shanxi Formation,northeastern Ordos Basin[D]. Xuzhou:China University of Mining and Technology,2016.

[26] 郭敬民,孙恩慧,汪巍,等. 深度挖掘水平井资料预测地层倾角新方法[J]. 西南石油大学学报(自然科学版),2022,44(1):66−78

GUO Jingmin,SUN Enhui,WANG Wei,et al. A new method for predicting formation dip angle by deep mining horizontal well data[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2022,44(1):66−78

[27] 解飞,王蕴,梅俊伟,等. 基于地层旋转的地层视倾角计算新方法:应用于水平井地质导向[J]. 天然气工业,2020,40(6):61−68

XIE Fei,WANG Yun,MEI Junwei,et al. A new method for calculating apparent formation dips based on strata rotation[J]. Natural Gas Industry,2020,40(6):61−68

[28] 李晓梅,李洲,邓振龙,等. 基于反演多参数体约束地质建模的水平井预警技术:以玛湖地区致密砂砾岩油藏为例[J]. 油气地质与采收率,2021,28(5):57−63

LI Xiaomei,LI Zhou,DENG Zhenlong,et al. Early warning technology by geological modeling based on multiparameter constrained inversion for horizontal wells:A case of tight conglomerate reservoirs in Mahu area[J]. Petroleum Geology and Recovery Efficiency,2021,28(5):57−63

[29] 孙卫锋,张吉,马志欣,等. 苏里格气田水平井随钻地质导向技术及应用[J]. 岩性油气藏,2015,27(6):132−137

SUN Weifeng,ZHANG Ji,MA Zhixin,et al. Geosteering technology of horizontal well and its application in Sulige gas field[J]. Lithologic Reservoirs,2015,27(6):132−137

[30] 赵宏波,季伟,王冲,等. 榆林气田标志层法和沉积旋回法水平井导向技术[J]. 石油钻探技术,2018,46(6):39−46

ZHAO Hongbo,JI Wei,WANG Chong,et al. A geo–steering technique using maker and sedimentary cycles in horizontal weIl drilling in the Yulin gas field[J]. Petroleum Drilling Techniques,2018,46(6):39−46

[31] 金宝强,舒晓,陈建波,等. 水平井在曲流河储集层定量描述中的应用:以秦皇岛32–6油田为例[J]. 录井工程,2019,30(3):148−153

JIN Baoqiang,SHU Xiao,CHEN Jianbo,et al. Application of horizontal well in quantitative description of meandering river reservoir:Taking Qinhuangdao 32−6 oilfield as an example[J]. Mud Logging Engineering,2019,30(3):148−153

[32] 中国海洋石油集团有限公司,中海油能源发展股份有限公司. 一种地质导向施工质量的定量分析方法:CN202011205060. 9[P]. 2021-11-19.

[33] 郑尊凯. 深度学习模型下岩屑图像识别研究[D]. 荆州:长江大学,2019.

ZHENG Zunkai. Debris image recognition based on deep learning model[D]. Jingzhou:Yangtze University,2019.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.