•  
  •  
 

Coal Geology & Exploration

Abstract

To meet the rapid development of coal mine automation and intelligent production and the urgent need for rapid prevention and regional management outburst, and to promote the development of the gas disaster control technology system in large areas of coal mines, this paper aims to solve the problem of traditional coal seam drilling gas drainage technology, which is “not deep enough to be drilled and cannot be pumped out and cannot be tested.” It analyzes the application effects of technical equipment such as directional drilling, surface wells, staged hydraulic fracturing, deep hole sampling, and detection while drilling in various geological conditions in major mining areas over the past few years. A large-area control technology system for coal mine gas has been formed based on key technologies such as large-area advanced-while-drilling geological exploration and prediction, large-area surface and underground gas drainage, and non-contact continuous online dynamic prediction. The upgrading and transformation of coal mines has laid the foundation for the realization of the purpose of comprehensively controlling gas in large areas of coal mines without or less use of special gas treatment tunnels. Finally, it is concluded out that detection technologies such as nuclear magnetic detection, gamma, radar, and deep-hole optical fiber will be developed in the future to realize the identification of coal, rock and geological anomalies, and accurate measurement of gas parameters. technology to enhance the combined pre-pumping effect of up and down wells; develop regional ultra-large-flow fracturing pump sets or fracturing plants, coiled tubing fracturing and other technologies and equipment to enhance the regional permeation enhancement effect in coal mines; develop risk information fusion perception and highlight precursors Features intelligent identification, gas over-limit warning and other technologies are used to achieve continuous and accurate regional prediction and intelligent early warning.

Keywords

gas disaster, precision prevention and control technology system, ahead of large areas and time, forecast and early warning, prospect

DOI

10.12363/issn.1001-1986.21.12.0869

Reference

[1] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27.

[2] 国家发展改革委,国家能源局. “十三五”能源规划[EB/OL]. (2016-12-26) [2017-01-17]. http://www. nea.gov.cn/2017-01/17/c_135989417.htm.

[3] 国家能源局. 煤层气(煤矿瓦斯)开发利用“十三五”规划[EB/OL]. (2016-11-24) [2016-12-04]. http://www.gov.cn/xinwen/2016-12/04/content_5142853.htm.

[4] 卢义玉,李瑞,鲜学福,等. 地面定向井+水力割缝卸压方法高效开发深部煤层气探讨[J]. 煤炭学报,2021,46(3):876−884. LU Yiyu,LI Rui,XIAN Xuefu,et al. Discussion on the efficient exploitation method of deep coalbed methane with pressure relief by ground directional well+hydraulic slotting[J]. Journal of China Coal Society,2021,46(3):876−884.

[5] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6. YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.

[6] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7. YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.

[7] 翟红,令狐建设. 阳泉矿区瓦斯治理创新模式与实践[J]. 煤炭科学技术,2018,46(2):168−175. ZHAI Hong,LINGHU Jianshe. Practice and innovation mode of gas control in Yangquan mining area[J]. Coal Science and Technology,2018,46(2):168−175.

[8] 雷照源,郭超奇,黄兴利,等. 深部高瓦斯矿井大采高工作面立体抽采瓦斯技术[J]. 煤炭科学技术,2019,47(2):82−87. LEI Zhaoyuan,GUO Chaoqi,HUANG Xingli,et al. Study on 3D gas drainage technology of high cutting coal mining face in deep and high gassy mine[J]. Coal Science and Technology,2019,47(2):82−87.

[9] 杨俊哲,陈殿赋,罗伙根,等. 高瓦斯矿井井下大区域瓦斯超前治理技术[C]//煤炭安全高效绿色智能开采地质保障学术会议论文集. 西安,2020.

[10] 石智军,姚克,田宏亮,等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术,2019,47(5):22−28. SHI Zhijun,YAO Ke,TIAN Hongliang,et al. Present situation and prospect of directional drilling technology and equipment while drilling measurement in underground coal mine[J]. Coal Science and Technology,2019,47(5):22−28.

[11] 马晟翔. 突出煤层长距离定向钻孔瓦斯区域消突技术研究[D]. 贵阳:贵州大学,2019.

MA Shengxiang. Study on gas regional outburst elimination technology of long distance directional borehole in outburst coal seam[D]. Guiyang:Guizhou University,2019.

[12] 石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1−34. SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1−34.

[13] 周雷雷. 煤炭规划区地面煤层气井预抽技术体系[J]. 煤,2019,28(3):19−22. ZHOU Leilei. Technical system of surface CBM well pre–pumping in coal planning area[J]. Coal,2019,28(3):19−22.

[14] 张志刚,李日富. 煤矿重复扰动“采动–采空”地面井抽采技术及应用[J]. 煤炭科学技术,2021,49(10):91−97. ZHANG Zhigang,LI Rifu. Research and application of “mining–gob”surface well extraction under repeated disturbance in coal mines[J]. Coal Science and Technology,2021,49(10):91−97.

[15] 郭超奇,赵继展,李小建,等. 中硬低渗煤层定向长钻孔水力压裂瓦斯高效抽采技术与应用[J]. 煤田地质与勘探,2020,48(6):103−108. GUO Chaoqi,ZHAO Jizhan,LI Xiaojian,et al. Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. Coal Geology & Exploration,2020,48(6):103−108.

[16] 张俭,刘乐,赵继展,等. 煤层顶板定向长钻孔水力加砂分段压裂技术与装备[J/OL]. 煤田地质与勘探,2022:1–10 [2022-07-12]. http://kns.cnki.net/kcms/detail/61.1155.P.20220629.1232.004.html.

ZHANG Jian,LIU Le,ZHAO Jizhan,et al. Research on hydraulic fracturing technology and equipment of directional long drilling with sand in coal seam roof[J/OL]. Coal Geology & Exploration,2022:1–10 [2022-07-12]. http://kns.cnki.net/kcms/detail/61.1155.P.20220629.1232.004. html.

[17] 陈冬冬,王建利,贾秉义,等. 碎软煤层顶板梳状长钻孔水力压裂区域瓦斯高效抽采模式[J/OL]. 煤田地质与勘探,2022:1–8 [2022-07-12]. http://kns.cnki.net/kcms/detail/61.1155.P.20220704.1251.002.html.

CHEN Dongdong,WANG Jianli,JIA Bingyi,et al. High–efficiency regional gas extraction model after hydraulic fracturing of comb–shaped long boreholes in the roof of broken soft and low permeability coal seam[J/OL]. Coal Geology & Exploration,2022:1–8 [2022-07-12]. http://kns.cnki.net/kcms/detail/61.1155.P.20220704.1251.002. html.

[18] 邓楠. 煤层瓦斯含量直接测定取样技术研究进展[J]. 矿业安全与环保,2021,48(4):113−117. DENG Nan. Research status on direct measurement and sampling technology for coal seam gas content[J]. Mining Safety & Environmental Protection,2021,48(4):113−117.

[19] 高明忠,陈领,凡东,等. 深部煤矿原位保压保瓦斯取芯原理与技术探索[J]. 煤炭学报,2021,46(3):885−897. GAO Mingzhong,CHEN Ling,FAN Dong,et al. Principle and technology of coring with in–situ pressure and gas maintaining in deep coal mine[J]. Journal of China Coal Society,2021,46(3):885−897.

[20] 孙四清,张群,郑凯歌,等. 地面井煤层气含量精准测试密闭取心技术及设备[J]. 煤炭学报,2020,45(7):2523−2530. SUN Siqing,ZHANG Qun,ZHENG Kaige,et al. Technology and equipment of sealed coring for accurate determination of coalbed gas content in ground well[J]. Journal of China Coal Society,2020,45(7):2523−2530.

[21] 石智军,许超,李泉新,等. 随钻测量定向钻进技术在煤矿井下地质勘探中的应用[J]. 煤矿安全,2014,45(12):137−140. SHI Zhijun,XU Chao,LI Quanxin,et al. Application of MWD directional drilling technology in geologic exploration in underground coal mine[J]. Safety in Coal Mines,2014,45(12):137−140.

[22] 李泉新,褚志伟,许超,等. 煤矿井下泥浆脉冲无线随钻测量定向钻进技术[J]. 煤矿安全,2021,52(7):116−120. LI Quanxin,CHU Zhiwei,XU Chao,et al. Directional drilling technology with mud pulse wireless MWD in underground coal mine[J]. Safety in Coal Mines,2021,52(7):116−120.

[23] 张军. 矿井孔–巷无线电磁波透视探测方法[J]. 煤炭学报,2020,45(8):2856−2864. ZHANG Jun. Research on radio electromagnetic wave perspective detection method through borehole−roadway in mine[J]. Journal of China Coal Society,2020,45(8):2856−2864.

[24] 梁庆华,吴燕清,李云波,等. 无线电波探测瓦斯富集区理论与方法[J]. 煤炭学报,2017,42(增刊1):148−153. LIANG Qinghua,WU Yanqing,LI Yunbo,et al. Theory and method of coal seam gas enrichment area based on radio wave perspective detection[J]. Journal of China Coal Society,2017,42(Sup.1):148−153.

[25] 谷保泽,代振华,李明星,等. 透明地质保障技术构建方法:以乌海矿区为例[J]. 煤田地质与勘探,2022,50(1):136−143. GU Baoze,DAI Zhenhua,LI Mingxing,et al. Construction method on transparent geological guarantee technologies:A case study of Wuhai mining area[J]. Coal Geology & Exploration,2022,50(1):136−143.

[26] 韩承强. 反循环原位快速取样技术在煤层瓦斯含量准确测定中的应用研究[J]. 煤炭技术,2022,41(1):111−114. HAN Chengqiang. Study on application of reverse circulation in situ rapid sampling technology in accurate determination of gas content in coal seam[J]. Coal Technology,2022,41(1):111−114.

[27] 孙四清,张群,龙威成,等. 煤矿井下长钻孔煤层瓦斯含量精准测试技术及装置[J]. 煤田地质与勘探,2019,47(4):1−5. SUN Siqing,ZHANG Qun,LONG Weicheng,et al. Accurate test technology and device for coal seam gas content in long boreholes in underground coal mines[J]. Coal Geology & Exploration,2019,47(4):1−5.

[28] 贵宏伟,李学臣,郭艳飞,等. 千米钻机超深钻孔定点密闭取芯技术研究与应用[J]. 煤炭工程,2018,50(12):54−57. GUI Hongwei,LI Xuechen,GUO Yanfei,et al. Research and application of fixed–point closed sampling technology for super deep drilling in 1 000 m drilling machine[J]. Coal Engineering,2018,50(12):54−57.

[29] 龙威成. 井下煤层长距离定点密闭取心技术及应用研究[J]. 河南理工大学学报(自然科学版),2022,41(1):9−16. LONG Weicheng. Research of long distance fixed–point sealed coring technology and application in underground coal seam[J]. Journal of Henan Polytechnic University (Natural Science),2022,41(1):9−16.

[30] 龙威成,孙四清,陈建. 碎软煤层井下长距离定点密闭取心技术研究[J/OL]. 煤田地质与勘探,2022:1–7 [2022-06-20]. http://kns.cnki.net/kcms/detail/61.1155.p.20220614.1221.004.html.

LONG Weicheng,SUN Siqing,CHEN Jian. Study on long–distance fixed–point sealed coring technology in broken soft coal seam[J/OL]. Coal Geology & Exploration,2022:1–7 [2022-06-20]. http://kns.cnki.net/kcms/detail/61.1155.p.20220614.1221.004.html.

[31] 曹佐勇,何学秋,王恩元,等. 新建突出煤矿“先抽后建”模式与实施路径[J]. 煤炭学报,2016,41(增刊2):425−433. CAO Zuoyong,HE Xueqiu,WANG Enyuan,et al. Model and implementation path of“pumping in advance and then construction”for a new coal and gas outburst mine[J]. Journal of China Coal Society,2016,41(Sup.2):425−433.

[32] 龚杰立,李国富,李德慧,等. 山西省煤成气勘查开发现状及探索[J]. 煤田地质与勘探,2022,50(2):39−47. GONG Jieli,LI Guofu,LI Dehui,et al. Present situation and prospects of coal−derived gas exploration and development in Shanxi Province[J]. Coal Geology & Exploration,2022,50(2):39−47.

[33] 黎凤岐,乔炜,牛国斌,等. 地面多分支水平钻井与井下钻孔对接预抽瓦斯技术[J]. 煤炭科学技术,2014,42(5):48−50. LI Fengqi,QIAO Wei,NIU Guobin,et al. Gas pre−drainage technology of ground multi−branch horizontal well connected with underground mine borehole[J]. Coal Science and Technology,2014,42(5):48−50.

[34] 石智军,董书宁,杨俊哲,等. 煤矿井下3 000 m顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探,2019,47(6):1−7. SHI Zhijun,DONG Shuning,YANG Junzhe,et al. Key technology of drilling in–seam directional borehole of 3 000 m in underground coal mine[J]. Coal Geology & Exploration,2019,47(6):1−7.

[35] 程建远,陆自清,蒋必辞,等. 煤矿巷道快速掘进的“长掘长探”技术[J]. 煤炭学报,2022,47(1):404−412. CHENG Jianyuan,LU Ziqing,JIANG Bici,et al. A novel technology of“long excavation/long detection”for rapid excavation in coal mine roadway[J]. Journal of China Coal Society,2022,47(1):404−412.

[36] 黄旭超. 松软煤层煤巷掘进条带瓦斯治理技术研究[J]. 矿业安全与环保,2022,47(3):92−95. HUANG Xuchao. Research on gas control technology of coal roadway driving strip in soft coal seam[J]. Mining Safety & Environmental Protection,2022,47(3):92−95.

[37] 张劲松. 定向长钻孔预抽煤巷条带瓦斯技术试验研究[J]. 煤炭技术,2020,39(9):102−105. ZHANG Jinsong. Experimental study on pre−extraction coal roadway strip gas technology of directional long borehole[J]. Coal Technology,2020,39(9):102−105.

[38] 梁道富,曹建明,代茂,等. 贵州青龙煤矿碎软煤层区域瓦斯递进式抽采技术[J]. 煤田地质与勘探,2020,48(5):48−52. LIANG Daofu,CAO Jianming,DAI Mao,et al. Progressive gas extraction technology in broken soft coal seam of Qinglong coal mine,Guizhou Province[J]. Coal Geology & Exploration,2020,48(5):48−52.

[39] 李宏,韩兵. 本煤层预抽区域长钻孔布孔方式的确定[J]. 煤炭技术,2020,39(2):74−77. LI Hong,HAN Bing. Determination of hole layout method for long borehole in predrainage area of coal seam[J]. Coal Technology,2020,39(2):74−77.

[40] 闫保永. ZYWL–23000DS大功率定向钻机几项关键技术研究[J]. 矿山机械,2020,48(3):12−15. YAN Baoyong. Several key technologies about ZYWL−23000DS high−power directional drill rig[J]. Mining & Processing Equipment,2020,48(3):12−15.

[41] 国家安全生产监督管理总局,国家煤矿安全监察局. 防治煤与瓦斯突出细则[M]. 北京:煤炭工业出版社,2019.

[42] 武华太. 煤矿区瓦斯三区联动立体抽采技术的研究和实践[J]. 煤炭学报,2011,36(8):1312−1316. WU Huatai. Study and practice on technology of three-zones linkage 3D coalbed methane drainage in coal mining area[J]. Journal of China Coal Society,2011,36(8):1312−1316.

[43] 姜在炳,李浩哲,方良才,等. 紧邻碎软煤层顶板水平井分段穿层压裂裂缝延展机理[J]. 煤炭学报,2020,45(增刊2):922−931. JIANG Zaibing,LI Haozhe,FANG Liangcai,et al. Fracture propagation mechanism of staged through–layer fracturing for horizontal well in roof adjacent to broken–soft coal seams[J]. Journal of China Coal Society,2020,45(Sup.2):922−931.

[44] 周加佳. 水平井分段压裂技术在煤层气开发中的应用实践[J]. 中国煤炭地质,2019,31(8):27−30. ZHOU Jiajia. Application practice of horizontal well segmental fracturing technology in CBM exploitation[J]. Coal Geology of China,2019,31(8):27−30.

[45] 武华太. 煤矿区瓦斯三区联动立体抽采技术的研究和实践[J]. 煤炭学报,2011,36(8):1312−1316. WU Huatai. Study and practice on technology of three–zones linkage 3D coalbed methane drainage in coal mining area[J]. Journal of China Coal Society,2011,36(8):1312−1316.

[46] 高旭,郭建行,张浪,等. 近距离突出煤层群煤与瓦斯共采模式研究[J]. 煤炭工程,2015,47(10):83−86. GAO Xu,GUO Jianhang,ZHANG Lang,et al. Study on simultaneous extraction of coal and gas in contiguous outburst coal seams[J]. Coal Engineering,2015,47(10):83−86.

[47] 程志恒,陈亮,苏士龙,等. 近距离煤层群井上下联合防突模式及其效果动态评价[J]. 煤炭学报,2020,45(5):1635−1647. CHENG Zhiheng,CHEN Liang,SU Shilong,et al. Outburst prevention mode of ground and underground technology joint and its dynamic evaluation in contiguous coal seams[J]. Journal of China Coal Society,2020,45(5):1635−1647.

[48] 方良才,李贵红,李丹丹,等. 淮北芦岭煤矿煤层顶板水平井煤层气抽采效果分析[J]. 煤田地质与勘探,2020,48(6):155−160. FANG Liangcai,LI Guihong,LI Dandan,et al. Analysis on the CBM extraction effect of the horizontal wells in the coal seam roof in Luling coal mine in Huaibei[J]. Coal Geology & Exploration,2020,48(6):155−160.

[49] 熊先钺,边利恒,王伟,等. 韩城区块煤储层间接压裂地质主控因素研究[J]. 煤炭科学技术,2017,45(6):189−195. XIONG Xianyue,BIAN Liheng,WANG Wei,et al. Research on main geological controlling factors of coal reservoir indirect fracturing in Hancheng block[J]. Coal Science and Technology,2017,45(6):189−195.

[50] 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17−21. WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17−21.

[51] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.

[52] 张兆一. 松软煤层水力压裂有效半径影响范围主控因素分析[J]. 矿业安全与环保,2021,48(4):99−103. ZHANG Zhaoyi. Analysis of main controlling factors of effective radius of fracture in soft coal seam[J]. Mining Safety & Environmental Protection,2021,48(4):99−103.

[53] 雷毅,武文宾,陈久福. 松软煤层井下水力压裂增透技术及应用[J]. 煤矿开采,2015,20(1):105−107. LEI Yi,WU Wenbin,CHEN Jiufu. Technology of underground permeability improvement of soft coal–seam with hydrofracture and its application[J]. Coal Mining Technology,2015,20(1):105−107.

[54] 田坤云,宫伟东,魏二剑,等. 松软煤层及砂岩顶板水力挠动卸压增透效果对比分析[J]. 煤炭学报,2021,46(6):1888−1897. TIAN Kunyun,GONG Weidong,WEI Erjian,et al. Gas pressure relief–permeability increase effect comparative analysis about hydraulic disturbance to soft coal seam and its sandstone roof[J]. Journal of China Coal Society,2021,46(6):1888−1897.

[55] 唐巨鹏,郝娜,潘一山,等. 基于声发射能量分析的煤与瓦斯突出前兆特征试验研究[J]. 岩石力学与工程学报,2021,40(1):31−42. TANG Jupeng,HAO Na,PAN Yishan,et al. Experimental study on precursor characteristics of coal and gas outbursts based on acoustic emission energy analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):31−42.

[56] 苌延辉. 基于瓦斯涌出特征的预警技术在王坡煤矿的应用[J]. 煤炭工程,2019,51(10):81−84. CHANG Yanhui. Application of early warning technology based on gas emission characteristics in Wangpo coal mine[J]. Coal Engineering,2019,51(10):81−84.

[57] 李成成,郭寿松. 基于瓦斯涌出特征的突出预警技术在新元矿的应用[J]. 煤矿安全,2017,48(3):118−121. LI Chengcheng,GUO Shousong. Application of outburst early warning technology based on gas emission characteristics in Xinyuan mine[J]. Safety in Coal Mines,2017,48(3):118−121.

[58] 王建民,马国龙. 基于瓦斯涌出特征的突出预警技术在大淑村矿的应用[J]. 矿业安全与环保,2013,40(6):39−42. WANG Jianmin,MA Guolong. Application of outburst early warning technology based on gas emission characteristics in Dashucun mine[J]. Mining Safety & Environmental Protection,2013,40(6):39−42.

[59] 庄春喜,李杨虎,孔凡童,等. 随钻斯通利波测井反演地层渗透率的理论、方法及应用[J]. 地球物理学报,2019,62(11):4482−4492. ZHUANG Chunxi,LI Yanghu,KONG Fantong,et al. Formation permeability estimation using Stoneley waves from logging while drilling:Theory,method,and application[J]. Chinese Journal of Geophysics,2019,62(11):4482−4492.

[60] 陈刚,张冀冠,李泉新,等. 煤层水平井中随钻电磁波仪器影响因素分析及电阻率模拟计算[J]. 煤田地质与勘探,2022,50(1):45−51. CHEN Gang,ZHANG Jiguan,LI Quanxin,et al. Influential factors of the electromagnetic wave instrument while drilling in coal seam horizontal wells and resistivity simulation calculation[J]. Coal Geology & Exploration,2022,50(1):45−51.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.