•  
  •  
 

Coal Geology & Exploration

Abstract

The characteristics of the existing permafrost and natural gas hydrates were summarized and analyzed by studying the natural gas hydrate formation in Muli Region, Qinghai Province. On the basis of the evidence of the Quaternary climate survey and the available geological exploration data on the Qinghai-Tibet Plateau, FLAC3D was used to simulate and calculate the formation of permafrost. The calculation results show that the existing permafrost probably formed during the late Holocene Neoglacial(4 000-3 000 to 1 000 a BP), and a stable boundary at bottom of the permafrost layer formed after about 170 a of cooling at a depth of 122 m. Furthermore, the temperature gradient in the permafrost layer is 1.64℃/hm. The calculated results are quite consistent with the results obtained in the field exploration. In addition, on the basis of the formation of the permafrost layer, temperature and pressure curves of the formation of A/B class natural gas hydrates and the current status of natural gas hydrate accumulation, the reasons for the relatively scattered distribution of natural gas hydrates in Muli Region were analyzed. First, due to the geological structure, the hydrocarbon gas only migrated to the depth of around 140 m, and the natural hydrate underwent a phase change in situ. Second, it is possible that the hydrocarbon gas migrated to the shallower strata. However, as the repeated evolution of permafrost over many years, the gas hydrate entered the atmosphere in gaseous form after being decomposed dynamically. The related results can provide some ideas for the exploration and exploitation of the natural gas hydrate in Muli Region.

Keywords

Muli Coalfield, permafrost, gas hydrate, reservoir formation condition, simulation

DOI

10.12363/issn.1001-1986.21.06.0347

Reference

[1] ZHU Youhai,WANG Pingkang,PANG Shouji,et al. A review of the resource and test production of natural gas hydrates in China[J]. Energy Fuels,2021,35(11):9137−9150.

[2] 王平康,祝有海,卢振权,等. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学:物理学 力学 天文学,2019,49(3):034606. WANG Pingkang,ZHU Youhai,LU Zhenquan,et al. Research progress of gas hydrates in the Qilian mountain permafrost,Qinghai,northwest China:Review[J]. Scientia Sinica Physica,Mechanica & Astronomica,2019,49(3):034606.

[3] MAKOGON Y F,HOLDITCH S A,MAKOGON T Y. Natural gas–hydrates:A potential energy source for the 21st century[J]. Journal of Petroleum Science and Engineering,2007,56(1/2/3):14−31.

[4] 天然气水合物新矿种获得国务院正式批准新闻发布会. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/gtzyb/Document/1606352/1606352.

[5] 周幼吾,郭东信,邱国庆,等. 中国冻土[M]. 北京:科学出版社,2000.

[6] 徐学祖,程国栋,俞祁浩. 青藏高原多年冻土区天然气水合物的研究前景和建议[J]. 地球科学进展,1999,14(2):201−204. XU Xuezu,CHENG Guodong,YU Qihao. Research prospect and suggestions of gas hydrates in permafrost regions on the Qinghai−Tibet Plateau[J]. Advance in Earth Sciences,1999,14(2):201−204.

[7] 陈多福,王茂春,夏斌. 青藏高原冻土带天然气水合物的形成条件与分布预测[J]. 地球物理学报,2005,48(1):165−172. CHEN Duofu,WANG Maochun,XIA Bin. Formation condition and distribution prediction of gas hydrate in Qinghai–Tibet Plateau permafrost[J]. Chinese Journal of Geophysics,2005,48(1):165−172.

[8] 吴青柏,蒋观利,蒲毅彬,等. 青藏高原天然气水合物的形成与多年冻土的关系[J]. 地质通报,2006,25(1/2):29−33. WU Qingbai,JIANG Guanli,PU Yibin,et al. Relationship between permafrost and gas hydrates on Qinghai−Tibet Plateau[J]. Geological Bulletin of China,2006,25(1/2):29−33.

[9] 祝有海,刘亚玲,张永勤. 祁连山多年冻土区天然气水合物的形成条件[J]. 地质通报,2006,25(1/2):58−63. ZHU Youhai,LIU Yaling,ZHANG Yongqin. Formation conditions of gas hydrates in permafrost of the Qilian mountains,northwest China[J]. Geological Bulletin of China,2006,25(1/2):58−63.

[10] 祝有海,张永勤,文怀军,等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报,2009,83(11):1762−1771. ZHU Youhai,ZHANG Yongqin,WEN Huaijun,et al. Gas hydrates in the Qilian mountain permafrost,Qinghai,northwest China[J]. Acta Geologica Sinica,2009,83(11):1762−1771.

[11] 曹代勇,王丹,李靖,等. 青海祁连山冻土区木里煤田天然气水合物气源分析[J]. 煤炭学报,2012,37(8):1364−1368. CAO Daiyong,WANG Dan,LI Jing,et al. Gas source analysis of natural gas hydrate of Muli coalfield in Qilian mountain permafrost,Qinghai Province,China[J]. Journal of China Coal Society,2012,37(8):1364−1368.

[12] 卢振权,祝有海,张永勤,等. 青海省祁连山冻土区天然气水合物存在的主要证据[J]. 现代地质,2010,24(2):329−336. LU Zhenquan,ZHU Youhai,ZHANG Yongqin,et al. Major evidence for gas hydrate existence in the Qilian permafrost,Qinghai[J]. Geoscience,2010,24(2):329−336.

[13] 黄霞,祝有海,王平康,等. 祁连山冻土区天然气水合物烃类气体组分的特征和成因[J]. 地质通报,2011,30(12):1851−1856. HUANG Xia,ZHU Youhai,WANG Pingkang,et al. Hydrocarbon gas composition and origin of core gas from the gas hydrate reservoir in Qilian mountain permafrost[J]. Geological Bulletin of China,2011,30(12):1851−1856.

[14] 黄霞,刘晖,张家政,等. 祁连山冻土区天然气水合物烃类气体成因及其意义[J]. 地质科学,2016,51(3):934−945. HUANG Xia,LIU Hui,ZHANG Jiazheng,et al. Gnetic–type and its significance of hydrocarbon gases from permafrost−associated gas hydrate in Qilian mountain[J]. Chinese Journal of Geology,2016,51(3):934−945.

[15] 胡道功,张耀玲,戚申帮,等. 祁连山天然气水合物主要控矿因素及形成机理[J]. 中国地质调查成果快讯,2017(3):33−36. HU Daogong,ZHANG Yaoling,QI Shenbang,et al. Main ore-controlling factors and formation mechanism of natural gas hydrate in Qilian Mountains[J]. News of China Geological Survey Results,2017(3):33−36.

[16] WANG Pingkang,ZHANG Xuhui,ZHU Youhai,et al. Effect of permafrost properties on gas hydrate petroleum system in the Qilian mountains,Qinghai,northwest China[J]. Environmental Science:Processes & Impacts,2014,16(12):2711−2720.

[17] LIU Jia,JIANG Guanli,WU Qingbai,et al. Regional climate change signals inferred from a borehole temperature profile in Muli,Qilian mountain,using the Tikhonov method[J]. Arctic Antarctic and Alpine Research,2020,52(1):450−460.

[18] 祝有海. 陆域天然气水合物资源勘查与试采取得系列成果[J]. 中国地质调查成果快讯,2017,63/64:1−5. ZHU Youhai. A series of achievements have been made in the exploration and trial exploitation of natural gas hydrate resources on land[J]. News of China Geological Survey Results,2017,63/64:1−5.

[19] ZHU Youhai,PANG Shouji,XIAO Rui,et al. Natural gas hydrates in the Qinghai–Tibet Plateau:Characteristics,formation,and evolution[J]. China Geology,2021,4(1):17−31.

[20] 陈利敏,秦荣芳,蒋艾林,等. 青海木里三露天天然气水合物钻孔岩心构造裂隙特征[J]. 现代地质,2015,29(5):1087−1095. CHEN Limin,QIN Rongfang,JIANG Ailin,et al. Structural fracture characteristics of cores from gas−hydrate drillholes in Sanlutian of Muli Coalfield,Qinghai[J]. Geoscience,2015,29(5):1087−1095.

[21] 卢振权,翟刚毅,刘晖,等. 祁连山冻土区天然气水合物成藏机制研究带动调查新发现[J]. 中国地质调查成果快讯,2017,63/64:21−24. LU Zhenquan,ZHAI Gangyi,LIU Hui,et al. The study of gas hydrate accumulation mechanism in Qilian mountain permafrost region leads to new findings[J]. News of China Geological Survey Results,2017,63/64:21−24.

[22] 王超群,丁莹莹,胡道功,等. 祁连山冻土区DK–9孔温度监测及天然气水合物稳定带厚度[J]. 现代地质,2017,31(1):158−166. WANG Chaoqun,DING Yingying,HU Daogong,et al. Temperature monitoring results for gas hydrate borehole DK−9 and thickness of gas hydrate stability zone in the Qilian mountains permafrost[J]. Geoscience,2017,31(1):158−166.

[23] 金春爽,乔德武,卢振权,等. 青海木里冻土区水合物稳定带的特征研究:模拟与钻探结果对比[J]. 地球物理学报,2011,54(1):173−181. JIN Chunshuang,QIAO Dewu,LU Zhenquan,et al. Study on the characteristics of gas hydrate stability zone in the Muli permafrost,Qinghai:Comparison between the modeling and drilling results[J]. Chinese Journal of Geophysics,2011,54(1):173−181.

[24] 祝有海,张永勤,文怀军. 祁连山冻土区天然气水合物科学钻探工程概况[J]. 地质通报,2011,30(12):1816−1822. ZHU Youhai,ZHANG Yongqin,WEN Huaijun. An overview of the scientific drilling project of gas hydrate in Qilian mountain permafrost,northwestern China[J]. Geological Bulletin of China,2011,30(12):1816−1822.

[25] 中煤科工集团西安研究院有限公司. 中铁资源集团海西煤业聚乎更矿区四井田露天矿(首采区)边坡地质勘察与稳定性评价报告[R]. 西安:中煤科工集团西安研究院有限公司,2013.

[26] 金会军,金晓颖,何瑞霞,等. 两万年来的中国多年冻土形成演化[J]. 中国科学:地球科学,2019,49(8):1197−1212. JIN Huijun,JIN Xiaoying,HE Ruixia,et al. Evolution of permafrost in China during the last 20 ka[J]. Science China Earth Sciences,2019,49(8):1197−1212.

[27] 刘昌岭,贺行良,孟庆国,等. 祁连山冻土区天然气水合物分解气碳氢同位素组成特征[J]. 岩矿测试,2012,31(3):489−494. LIU Changling,HE Xingliang,MENG Qingguo,et al. Carbon and hydrogen isotopic compositions characteristics of the released gas from natural gas hydrates in the Qilian mountain permafrost[J]. Rock and Mineral Analysis,2012,31(3):489−494.

[28] 王平康,祝有海,卢振权,等. 祁连山冻土区天然气水合物岩性和分布特征[J]. 地质通报,2011,30(12):1839−1850. WANG Pingkang,ZHU Youhai,LU Zhenquan,et al. Gas hydrate in the Qilian mountain permafrost and its distribution characteristics[J]. Geological Bulletin of China,2011,30(12):1839−1850.

[29] 徐拴海,李宁,王晓东,等. 露天煤矿冻岩边坡饱和砂岩冻融损伤试验与劣化模型研究[J]. 岩石力学与工程学报,2016,35(12):2561−2571. XU Shuanhai,LI Ning,WANG Xiaodong,et al. Damage test and degradation model of saturated sandstone due to cyclic freezing and thawing of rock slopes of open−pit coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2561−2571.

[30] 黄诗冰,刘泉声,程爱平,等. 低温裂隙岩体水–热耦合模型研究及数值分析[J]. 岩土力学,2018,39(2):735−744. HUANG Shibing,LIU Quansheng,CHENG Aiping,et al. A coupled hydro–thermal model of fractured rock mass under low temperature and its numerical analysis[J]. Rock and Soil Mechanics,2018,39(2):735−744.

[31] 施雅风. 中国全新世大暖期气候与环境[M]. 北京:海洋出版社,1992.

[32] 张玉芝,杜彦良,孙宝臣. 季节性冻土地区高速铁路路基地温分布规律研究[J]. 岩石力学与工程学报,2014,33(6):1286−1296. ZHANG Yuzhi,DU Yanliang,SUN Baochen. Temperature distribution in roadbed of high–speed railway in seasonally frozen regions[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1286−1296.

[33] 徐斅祖,王家澄,张立新. 冻土物理学[M]. 北京:科学出版社,2010.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.