•  
  •  
 

Coal Geology & Exploration

Abstract

The buried depth of coal seam in the eastern margin of Ordos Basin changes greatly, and the characteristics of coalbed methane reservoir formation and reservoir reconstruction methods vary greatly with different buried depths. At present, coalbed methane exploration gradually extends from a shallow area of 1 000 m to a deeper area of 2 000 m. To study the theory and technology of efficient exploration and development of coalbed methane resources under different burial depths, this paper reviews the exploration and development practices in the eastern margin of Ordos Basin in the past 30 years. According to the changes of geological knowledge, technological development, exploration workload, exploration achievements and gas production,the process of coalbed methane exploration and development in the eastern margin of Ordos Basin is divided into three stages In the first stage of exploring shallow coalbed methane(CBM), under the guidance of the theory of “enrichment of tectonic highs in shallow coal-rich areas”, the gas field in Hancheng WL1 well area is discovered,with coal seam burial depth less than 800 m, large coal seam thickness and high gas content. In the second stage of. shallow-scale of deep coal bed methane exploration, Under the guidance of “hydrodynamic gas control-tectonic adjustment-gently sloping monocline” formation theory, we selected the sweet spots with “burial depth less than 1 500 m, good hydrodynamic closure conditions, large coal seam thickness, high gas content, gently sloping monocline and positive tectonics”, and discovered the coal-bed methane fields in Baode and Linfen, changing the concept of reservior transformation, and realized the effective production enhancement and transformation of Hancheng tectonic coal. In the breakthrough stage of deep CBM exploration, the reservoir formation model of “temperature -pressure controlled gas and high saturation” is put forward to guide the exploration breakthrough of CBM in depth of more than 2 000 m. On this basis, the occurrence, enrichment characteristics and target direction of coalbed methane in typical blocks are analyzed, and three enlightenments from coalbed methane exploration and development in the eastern margin of Ordos Basin are summarized: Preservation conditions are important factors for enrichment and accumulation of shallow coalbed methane in Baode block; Three types of indirect roof fracturing and perforating modes support the coal seam stimulation in Hancheng structure; The “geology-engineering” sweet spot evaluation boosts the exploration breakthrough of deep coalbed methane in Daning-Jixian Block.

Funding Information

10.12363/issn.1001-1986.21.12.0823

Keywords

eastern margin of Ordos Basin, shallow-deep coalbed methane, exploration history, geological engineering dessert, roof indirect fracturing

Reference

[1] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18. XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of “double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18.

[2] 朱庆忠,杨延辉,左银卿,等. 中国煤层气开发存在的问题及破解思路[J]. 天然气工业,2018,38(4):96−100. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. CBM development in China:Challenges and solutions[J]. Natural Gas Industry,2018,38(4):96−100.

[3] 杨陆武. 难动用煤层气资源的高产开采技术研究:论煤层气资源的特殊性及其开发工程中的“窗–尾效应”[J]. 煤炭学报,2016,41(1):32−39. YANG Luwu. Produce high rate gas from poor CBM reservoir:Study on CBM resource types and “Window–Long tail Effects” of reservoir during delivering gas[J]. Journal of China Coal Society,2016,41(1):32−39.

[4] 朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55−60. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. On the scientific exploitation of high–rank CBM resources[J]. Natural Gas Industry,2020,40(1):55−60.

[5] 李五忠,孙斌,孙钦平,等. 以煤系天然气开发促进中国煤层气发展的对策分析[J]. 煤炭学报,2016,41(1):67−71. LI Wuzhong,SUN Bin,SUN Qinping,et al. Analysis on coal−bed methane development based on coal measure gas in China and its countermeasure[J]. Journal of China Coal Society,2016,41(1):67−71.

[6] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68. GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.

[7] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604. ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.

[8] 邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433−442. ZOU Caineng,YANG Zhi,HUANG Shipeng,et al. Resource types,formation,distribution and prospects of coal−measure gas[J]. Petroleum Exploration and Development,2019,46(3):433−442.

[9] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129−136. JIA Chengzao,ZHENG Min,ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2):129−136.

[10] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979−1007. ZOU Caineng,YANG Zhi,ZHU Rukai,et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica,2015,89(6):979−1007.

[11] 戴金星. 中国煤成气研究二十年的重大进展[J]. 石油勘探与开发,1999,26(3):1−10. DAI Jinxing. Significant advancement in research on coal formed gas in China[J]. Petroleum Exploration and Development,1999,26(3):1−10.

[12] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业,2010,30(6):1–6.

JIE Mingxun. Prospects in coalbed methane gas exploration and production in the eastern Ordos Basin[J]. Natural Gas Industry,20l0,30(6):l–6.

[13] 接铭训,葛晓丹,彭朝阳,等. 中国煤层气勘探开发工程技术进展与发展方向[J]. 天然气工业,2011,3l(12):63−65. JIE Mingxun,GE Xiaodan,PENG Chaoyang,et al. Advances in the CBM exploration and development techniques and their developing trend in China[J]. Natural Gas Industry,2011,3l(12):63−65.

[14] 秦勇,袁亮,胡千庭,等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术,2012,40(10):1−6. QIN Yong,YUAN Liang,HU Qianting,et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology,2012,40(10):1−6.

[15] 李勇,孟尚志,吴鹏,等. 煤层气成藏机理及气藏类型划分:以鄂尔多斯盆地东缘为例[J]. 天然气工业,2017,37(8):22−30. LI Yong,MENG Shangzhi,WU Peng,et al. Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(8):22−30.

[16] 刘大锰,李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术,2014,42(6):19−24. LIU Dameng,LI Junqian. Main geological controls on distribution and occurence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology,2014,42(6):19−24.

[17] 伊伟. 鄂尔多斯盆地韩城矿区中煤阶煤层气成藏模式[J]. 新疆石油地质,2017,38(2):165−170. YI Wei. Accumulation pattern of medium rank coalbed methane in Hancheng mining area,Ordos Basin[J]. Xinjiang Petroleum Geology,2017,38(2):165−170.

[18] 陈跃,马东民,方世跃,等. 构造和水文地质条件耦合作用下煤层气富集高产模式[J]. 西安科技大学学报,2019,39(4):644−655. CHEN Yue,MA Dongmin,FANG Shiyue,et al. Enrichment and high–yield models of coalbed methane influenced by geologic structures and hydrologic conditions[J]. Journal of Xi’an University of Science and Technology,2019,39(4):644−655.

[19] 张用德,唐书恒,张淑霞. 国外煤层气开发对我国的启示[J]. 中国矿业,2013,22(增刊1):4−6. ZHANG Yongde,TANG Shuheng,ZHANG Shuxia. Thinking of coal bed methane development in China according to abroad countries development experiments[J]. China Mining Magazine,2013,22(Sup.1):4−6.

[20] 曹艳,龙胜祥,李辛子,等. 国内外煤层气开发状况对比研究的启示[J]. 新疆石油地质,2014,35(1):109−113. CAO Yan,LONG Shengxiang,LI Xinzi,et al. The enlightenment from comparative studies of the coalbed methane(CBM) development at Home and Abroad[J]. Xinjiang Petroleum Geology,2014,35(1):109−113.

[21] 聂志宏,巢海燕,刘莹,等. 鄂尔多斯盆地东缘深部煤层气生产特征及开发对策:以大宁–吉县区块为例[J]. 煤炭学报,2018,43(6):1738−1746. NIE Zhihong,CHAO Haiyan,LIU Ying,et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin:Taking Daning–Jixian block for example[J]. Journal of China Coal Society,2018,43(6):1738−1746.

[22] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1−11. WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):1−11.

[23] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136. QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.

[24] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296. YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology−engineering integration fracturing for deep CBM in Yanchuannan field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.

[25] 梁冰,石迎爽,孙维吉,等. 中国煤系“三气”成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167−173. LIANG Bing,SHI Yingshuang,SUN weiji,et al. Reservoir forming characteristics of “the three gases” in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society,2016,41(1):167−173.

[26] 李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24−31. LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):24−31.

[27] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.

[28] OLSEN T N,BRENIZE G,FRENZEL T. Improvement processes for coalbed natural gas completion and stimulation[C]//SPE Annual Technical Conference and Exhibition. Denver,Colorado,USA:5−80 October,2003,SPE–84122–MS.

[29] 饶孟余,张遂安,商昌盛. 提高我国煤层气采收率的主要技术分析[J]. 中国煤层气,2007,4(2):12−16. RAO Mengyu,ZHANG Sui’an,SHANG Changsheng. Analysis on key techniques to improve CBM recovery in China[J]. China Coalbed Methane,2007,4(2):12−16.

[30] 张金波,吴财芳. 煤层气开采技术应用现状及其改进[J]. 煤炭科学技术,2012,40(8):88−91. ZHANG Jinbo,WU Caifang. Application status and improvement of coal bed methane development technology[J]. Coal Science and Technology,2012,40(8):88−91.

[31] 边利恒,熊先钺,王炜彬. 低渗透软煤储层压裂改造研究[J]. 煤炭技术,2017,36(2):185−186. BIAN Liheng,XIONG Xianyue,WANG Weibin. Research on stimulation of low permeability soft coal formation[J]. Coal Technology,2017,36(2):185−186.

[32] 朱宝存,唐书恒,张佳赞. 煤岩与顶底板岩石力学性质及对煤储层压裂的影响[J]. 煤炭学报,2009,34(6):756−760. ZHU Baocun,TANG Shuheng,ZHANG Jiazan. Mechanics characteristics of coal and its roof and floor rock and the effects of hydraulic fracturing on coal reservoir[J]. Journal of China Coal Society,2009,34(6):756−760.

[33] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J/OL]. 煤田地质与勘探,2022:1–15[2021−12−22].https://kns.cnki.net/kcms/detail/61.1155.p.20211220.1747.006.html.

XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient development of coalbed methane in China[J/OL]. Coal Geology & Exploration,2022:1–15[2021–12–22].https://kns.cnki.net/kcms/detail/61.1155.p.20211220.1747.006.html.

[34] 付玉通,张伟,李永臣,等. 鄂东南地区深部煤层气煤体结构测井评价研究[J]. 中国煤炭,2017,43(9):31−34. FU Yutong,ZHANG Wei,LI Yongchen,et al. Logging evaluation research on the structure of deep coal body with CBM in the southeast of Hubei Province[J]. China Coal,2017,43(9):31−34.

[35] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性:煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14−23. QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas–bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14−23.

[36] 康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438. KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal−bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438.

[37] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439. YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.

[38] 贾承造,庞雄奇,宋岩. 论非常规油气成藏机理:油气自封闭作用与分子间作用力[J]. 石油勘探与开发,2021,48(3):437−452. JIA Chengzao,PANG Xiongqi,SONG Yan. The mechanism of unconventional hydrocarbon formation:Hydrocarbon self–containment and intermolecular forces[J]. Petroleum Exploration and Development,2021,48(3):437−452.

[39] 邹才能,杨智,张国生,等. 常规–非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,2014,41(1):14−27. ZOU Caineng,YANG Zhi,ZHANG Guosheng,et al. Conventional and unconventional petroleum“orderly accumulation”:Concept and practical significance[J]. Petroleum Exploration and Development,2014,41(1):14−27.

[40] PANG Xiongqi,LIU Keyu,MA Zhongzhen,et al. Dynamic field division of hydrocarbon migration,accumulation and hydrocarbon enrichment rules in sedimentary basins[J]. Acta Geologica Sinica(English Edition),2012,86(6):1559−1592.

[41] PANG Xiongqi,JIA Chengzao,WANG Wenyang,et al. Buoyance–driven hydrocarbon accumulation depth and its implication for unconventional resource prediction[J]. Geoscience Frontiers,2021,12(4):101133.

[42] 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发,2019,46(5):803−810. JIAO Fangzheng. Re–recognition of“unconventional”in unconventional oil and gas[J]. Petroleum Exploration and Development,2019,46(5):803−810.

[43] 田文广,汤达祯,王志丽,等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报,2012,18(3):479−484. TIAN Wenguang,TANG Dazhen,WANG Zhili,et al. Origin of coal−bed methane in Baode,northeastern Ordos Basin[J]. Geological Journal of China Universities,2012,18(3):479−484.

[44] 杨秀春,毛建设,林文姬,等. 保德区块煤层气勘探历程与启示[J]. 新疆石油地质,2021,42(3):381−388. YANG Xiuchun,MAO Jianshe,LIN Wenji,et al. Exploration history and enlightenment of coalbed methane in Baode block[J]. Xinjiang Petroleum Geology,2021,42(3):381−388.

[45] 周加佳. 碎软低渗煤层煤层气直井间接压裂技术及应用实践[J]. 煤田地质与勘探,2019,47(4):6−11. ZHOU Jiajia. Technology and application of indirect fracturing in CBM vertical well of broken and soft coal seam with low permeability[J]. Coal Geology & Exploration,2019,47(4):6−11.

[46] HOWER T. Performance of the Powder River coal seams,Wyodak and big George[C]//IPAMS Energy Conference. Denver:2003:1019–1025.

[47] PALMER I D,FRYAR R T,TUMINO K A,et al. Comparison between gel−fracture and water−fracture stimulations in the Black Warrior Basin[C]//Coal Bed Methane Symposium. Tuscaloosa,Alabama:1991:233–242.

[48] 张金才,尹尚先. 页岩油气与煤层气开发的岩石力学与压裂关 键技术[J]. 煤炭学报,2014,39(8):1691−1699. ZHANG Jincai,YIN Shangxian. Some technologies of rock mechanics applications and hydraulic fracturing in shale oil,shale gas and coalbed methane[J]. Journal of China Coal Society,2014,39(8):1691−1699.

[49] 俞绍诚. 水力压裂技术手册[M]. 北京:石油工业出版社,2010.

[50] MCLENNAN J D. Spalling and the development of a hydraulic fracturing strategy for coal[J]. Quarterly Review of Methane from Coal Seams Technology for Coal,1991,8(2):25−27.

[51] 杨宇,林璠,曹煜,等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探,2016,44(3):46−50. YANG Yu,LIN Fan,CAO Yu,et al. Pilot geological analysis of indirect fracturing in vertical CBM well[J]. Coal Geology & Exploration,2016,44(3):46−50.

[52] 唐书恒,朱宝存,颜志丰. 地应力对煤层气井水力压裂裂缝发育的影响[J]. 煤炭学报,2011,36(1):65−69. TANG Shuheng,ZHU Baocun,YAN Zhifeng. Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J]. Journal of China Coal Society,2011,36(1):65−69.

[53] 熊先钺,边利恒,王伟,等. 韩城区块煤储层间接压裂地质主控因素研究[J]. 煤炭科学技术,2017,45(6):189−195. XIONG Xianyue,BIAN Liheng,WANG Wei,et al. Research on main geological controlling factors of coal reservoir indirect fracturing in Hancheng Block[J]. Coal Science and Technology,2017,45(6):189−195.

[54] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121−142. ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al. Ten years of shale fracturing in China:Review and prospect[J]. Natural Gas Industry,2021,41(8):121−142.

[55] CHONG K K,GRIESER W V,PASSMAN A,et al. A completions guide book to shale–play development:A review of successful approaches towards shale–play stimulation in the last two decades[C]//Canadian Unconventional Resources and International Petroleum Conference. Calgary:SPE–133874–MS,2010.

[56] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129. YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro–fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129.

[57] 陈杨,姚艳斌,崔金榜,等. 郑庄区块煤储层水力压裂裂缝扩展地质因素分析[J]. 煤炭科学技术,2014,42(7):98−102. CHEN Yang,YAO Yanbin,CUI Jinbang,et al. Analysis on geological control factors of hydraulic fracture extension of coal reservoirs in Zhengzhuang block[J]. Coal Science and Technology,2014,42(7):98−102.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.