•  
  •  
 

Coal Geology & Exploration

Abstract

The scientific evaluation of favorable CBM blocks concerns the deployment of CBM exploration and development and the maximization of benefits. On the basis of the existing geological and engineering data, the geological background, resource characteristics, occurrence characteristics and reservoir characteristics of CBM are studied in the 18 blocks with unregistered mining rights in Guizhou Province. According to the principle of coal rank classification and evaluation, the optimum block among the 18 blocks is selected by using the multi-level fuzzy comprehensive evaluation method. The results are as follows. (1) The coal seams of Longtan Formation in the 18 planning blocks of Guizhou Province are formed in the marine-continental transitional sedimentary environment. With relatively complex tectonic conditions, a wide range of coal rank variations, and obvious regional characteristics of coal reservoirs, they are characterized by the development of thin-medium thickness coal seams, high gas content, high reservoir energy and low permeability. (2) The method for the classification and optimization of favorable areas of medium- and high-rank CBM is established. 15 evaluation parameters are selected based on the different methods and principles of different CBM evaluation index systems. The weights of parameters are obtained by the analytic hierarchy process, and the membership function of each parameter is established. The scores of evaluation samples are determined by the fuzzy comprehensive evaluation method, and then the comprehensive evaluation coefficient is obtained. (3) By using the coefficient, three favorable areas, five sub-favorable areas and nine backup areas are identified, among which, Dahebian syncline block of medium-rank CBM, Zhaozihe syncline north block, and southern section of Dafang anticline block of high-rank CBM are favorable areas for CBM exploration and development. The evaluation results provide support for the overall and orderly deployment of CBM exploration and development in Guizhou Province in the future.

Funding Information

10.12363/issn.1001-1986.21.12.0731

Keywords

planning blocks of CBM, favorable areas of CBM, characteristics of coal reservoirs, classification evaluation, analytic hierarchy process, complex tectonic area, Guizhou Province

Reference

[1] 秦勇,高弟. 贵州省煤层气资源潜力预测与评价[M]. 徐州:中国矿业大学出版社,2012.

[2] 高弟,秦勇,易同生. 论贵州煤层气地质特点与勘探开发战略[J]. 中国煤炭地质,2009,21(3):20−23. GAO Di,QIN Yong,YI Tongsheng. Geological characteristics,exploration and exploitation strategy of coalbed methane resources in Guizhou,China[J]. Coal Geology of China,2009,21(3):20−23.

[3] 徐宏杰. 贵州省薄—中厚煤层群煤层气开发地质理论与技术[D]. 徐州:中国矿业大学,2012.

XU Hongjie. Geological theory and technology of coalbed methane development with thin and medium coal seam zones in Guizhou [D]. Xuzhou:China University of Mining and Technology,2012.

[4] 敖显书. 小层射孔含煤岩段压裂煤岩层破裂行为及其机理:以松河煤层气示范工程为例[D]. 徐州:中国矿业大学,2017.

AO Xianshu. Coal–series strata fracture behavior and mechanism of small layer perforated coal–bearing rock section fracturing based on the CBM demonstration project of Songhe[D]. Xuzhou:China University of Mining and Technology,2017.

[5] 刘贻军,曾祥洲,胡刚,等. 贵州煤层气储层特征及勘探开发技术对策:以比德−三塘盆地为例[J]. 煤田地质与勘探,2017,45(1):71−74. LIU Yijun,ZENG Xiangzhou,HU Gang,et al. Characteristics and technical measures of exploration and development of coalbed methane reservoir in Guizhou Province:A case of Bide–Santang area[J]. Coal Geology & Exploration,2017,45(1):71−74.

[6] 刘江,桑树勋,周效志,等. 六盘水地区煤层气井合层排采实践与认识[J]. 煤田地质与勘探,2020,48(3):93−99. LIU Jiang,SANG Shuxun,ZHOU Xiaozhi,et al. Practice and understanding of multi−layer drainage of CBM wells in Liupanshui area[J]. Coal Geology & Exploration,2020,48(3):93−99.

[7] 彭兴平,谢先平,刘晓,等. 贵州织金区块多煤层合采煤层气排采制度研究[J]. 煤炭科学技术,2016,44(2):39−44. PENG Xingping,XIE Xianping,LIU Xiao,et al. Study on combined coalbed methane drainage system of multi seams in Zhijin Block,Guizhou[J]. Coal Science and Technology,2016,44(2):39−44.

[8] 高为,韩忠勤,金军,等. 六盘水煤田煤层气赋存特征及有利区评价[J]. 煤田地质与勘探,2018,46(5):81−89. GAO Wei,HAN Zhongqin,JIN Jun,et al. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield[J]. Coal Geology & Exploration,2018,46(5):81−89.

[9] 张春朋,吴财芳,李腾,等. 主成分分析法在煤层气选区评价中的应用[J]. 煤炭科学技术,2016,44(8):137−142. ZHANG Chunpeng,WU Caifang,LI Teng,et al. Principal component analysis method applied to evaluation on coalbed methane block selection[J]. Coal Science and Technology,2016,44(8):137−142.

[10] 霍凯中,赵永军,孙立冬. 灰色聚类分析在煤层气选区评价中的应用[J]. 断块油气田,2007,14(2):14−17. HUO Kaizhong,ZHAO Yongjun,SUN Lidong. Application of grey cluster analysis in selective area and evaluation of coalbed methane[J]. Fault–Block Oil & Gas Field,2007,14(2):14−17.

[11] 侯海海,邵龙义,唐跃,等. 基于多层次模糊数学的中国低煤阶煤层气选区评价标准:以吐哈盆地为例[J]. 中国地质,2014,41(3):1002−1009. HOU Haihai,SHAO Longyi,TANG Yue,et al. Criteria for selected areas evaluation of low rank CBM based on multi–layered fuzzy mathematics:A case study of Turpan–Hami Basin[J]. Geology in China,2014,41(3):1002−1009.

[12] 孙文卿,冉茂云,熊建龙,等. 突变理论在煤层气储层评价中的应用:以准噶尔盆地砂沟井田为例[J]. 天然气工业,2013,33(2):28−31. SUN Wenqing,RAN Maoyun,XIONG Jianlong,et al. Application of catastrophe theory to CBM reservoir evaluation of the Shagou coal field,Junggar basin[J]. Natural Gas Industry,2013,33(2):28−31.

[13] 张春朋. 黔西六盘水煤田煤层气资源特征与有利区优选[D]. 徐州:中国矿业大学,2017.

ZHANG Chunpeng. Resource characteristics and optimization of coalbed methane in Liupanshui coalfield[D]. Xuzhou:China University of Mining and Technology,2017.

[14] 徐宏杰,桑树勋,杨景芬,等. 贵州省煤层气勘探开发现状与展望[J]. 煤炭科学技术,2016,44(2):1−7. XU Hongjie,SANG Shuxun,YANG Jingfen,et al. Status and expectation on coalbed methane exploration and development in Guizhou Province[J]. Coal Science and Technology,2016,44(2):1−7.

[15] 熊孟辉,秦勇,易同生. 贵州晚二叠世含煤地层沉积格局及其构造控制[J]. 中国矿业大学学报,2006,35(6):778−782. XIONG Menghui,QIN Yong,YI Tongsheng. Sedimentary patterns and structural controls of Late Permian coal–bearing strata in Guizhou,China[J]. Journal of China University of Mining & Technology,2006,35(6):778−782.

[16] 戴传固,王敏,陈建书,等. 贵州构造运动特征及其地质意义[J]. 贵州地质,2013,30(2):119−124. DAI Chuangu,WANG Min,CHEN Jianshu,et al. Tectonic movement characteristics and its geological significance of Guizhou[J]. Guizhou Geology,2013,30(2):119−124.

[17] 邵龙义,高彩霞,张超,等. 西南地区晚二叠世层序−古地理及聚煤特征[J]. 沉积学报,2013,31(5):856−866. SHAO Longyi,GAO Caixia,ZHANG Chao,et al. Sequence–paleogeography and coal accumulation of Late Permian in southwestern China[J]. Acta Sedimentologica Sinica,2013,31(5):856−866.

[18] 邵龙义,华芳辉,易同生,等. 贵州省乐平世层序–古地理及聚煤规律[J]. 煤田地质与勘探,2021,49(1):45−56. SHAO Longyi,HUA Fanghui,YI Tongsheng,et al. Sequence– paleogeography and coal accumulation of Lopingian in Guizhou Province[J]. Coal Geology & Exploration,2021,49(1):45−56.

[19] 申建,秦勇,傅雪海,等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学,2014,25(9):1470−1476. SHEN Jian,QIN Yong,FU Xuehai,et al. Properties of deep coalbed methane reservoir–forming conditions and critical depth discussion[J]. Natural Gas Geoscience,2014,25(9):1470−1476.

[20] 高为,韩忠勤,吕放,等. 六盘水地区煤层含气性地质特征及差异成因[J/OL]. 煤炭科学技术, 2022:1–10[2022–1–23] . http://kns.cnki.net/kcms/detail/11.2402.TD.20210520.0855.002.html.

GAO Wei,HAN Zhongqin,LYU Fang,et al. Difference characteristics and main controlling factors in gas−bearing of coal seams in Liupanshui area[J/OL]. Coal Science and Technology, 2022:1–10[2022–1–23] . http://kns.cnki.net/kcms/detail/11.2402.TD.20210520.0855.002.html.

[21] 李道品,罗迪强,刘雨芬,等. 低渗透砂岩油田开发[M]. 北京:石油工业出版社,1997.

[22] 许浩,汤达祯,秦勇,等. 黔西地区煤储层压力发育特征及成因[J]. 中国矿业大学学报,2011,40(4):556−560. XU Hao,TANG Dazhen,QIN Yong,et al. Characteristics and origin of coal reservoir pressure in the west Guizhou area[J]. Journal of China University of Mining & Technology,2011,40(4):556−560.

[23] 郭金玉,张忠彬,孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报,2008,18(5):148−153. GUO Jinyu,ZHANG Zhongbin,SUN Qingyun. Study and applications of analytic hierarchy process[J]. China Safety Science Journal,2008,18(5):148−153.

[24] 韩俊,邵龙义,肖建新,等. 多层次模糊数学在煤层气开发潜力评价中的应用[J]. 煤田地质与勘探,2008,36(3):31−35. HAN Jun,SHAO Longyi,XIAO Jianxin,et al. Application of multi–layered fuzzy mathematics in assessment of exploitation potential of coalbed methane resources[J]. Coal Geology & Exploration,2008,36(3):31−35.

[25] 秦勇,刘焕杰,桑树勋,等. 煤层气资源综合评价标准及实例研究[J]. 中国煤层气,1996(2):91−93. QIN Yong,LIU Huanjie,SANG Shuxun,et al. Comprehensive evaluation standard and case study of coalbed methane resources[J]. China Coalbed Methane,1996(2):91−93.

[26] 苏付义. 煤层气储集层评价参数及其组合[J]. 天然气工业,1998,118(4):16−21. SU Fuyi. Coalbed methane reservoir evaluation parameters and their combinations[J]. Natural Gas Industry,1998,118(4):16−21.

[27] 刘键烨,罗东坤,李祖欣,等. 煤层气选区评价指标权重研究[J]. 煤炭技术,2018,37(11):38−40. LIU Jianye,LUO Dongkun,LI Zuxin,et al. Study on weight of CBM selected area evaluation index[J]. Coal Technology,2018,37(11):38−40.

[28] 邓雪,李家铭,曾浩健,等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识,2012,42(7):93−100. DENG Xue,LI Jiaming,ZENG Haojian,et al. Research on computation methods of AHP wight vector and its applications[J]. Mathematics in Practice and Theory,2012,42(7):93−100.

[29] 桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543. SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543.

[30] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.