•  
  •  
 

Coal Geology & Exploration

Abstract

In order to realize the fine detection of hydrogeological conditions by natural source single-component magnetotelluric technology, the problems of magnetotelluric signal acquisition and processing were systematically analyzed, and study was conducted for the response characteristics of underground water-rich area on magnetotelluric wave. Besides, water-richness index model was established according to the magnetotelluric sounding theory and analytic hierarchy process. Moreover, the corresponding relationship between waveform and lithology was fitted based on a large amount of experimental data, and the information on physical properties, such as the dielectric constant, elastic brittleness, density and porosity was extracted from the fractal dimension of waveform. Then, these data were assigned and normalized according to the principle favorable for water enrichment in rock strata, and further incorporated into the water-richness index model for multi-dimensional coupling calculation, thus obtaining the water-richness index value of the corresponding depth. The water-richness index contains a wealth of information on physical properties of rock strata, enhances the response amplitude of magnetotelluric wave in water-rich area, and thereby reduces the influence of change in intensity of natural field source on signal acquisition and recognition. According to the water-richness index model, double-layer array-sweep type parallel plate capacitive sensor and a magnetotelluric water detector were designed using the modern computer and communication technology, and the data processing program was developed accordingly, with the resolution of detection depth up to 0.1 m, thus capable of automatically identifying the weak signal from the deep places in the complex electromagnetic signals, and further realizing the acquisition of signal from the time-varying field source and calculating the relatively stable water-richness index. As shown by the field tests, the instrument could clearly distinguish the aquifers and water-impermeable layers, identify the water-rich areas and the tiny water-conducting channels. Generally, this technology has broad application prospects in water hazard prevention in mine, restoration and treatment of abandoned and old mined areas, grouting for water plugging, and detection of deep hydrogeological conditions.

Keywords

natural source, magnetotelluric, array-sweep type, water-richness index model, fractal dimension identification

DOI

10.12363/issn.1001-1986.22.05.0365

Reference

[1] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141

CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141

[2] 林君. 核磁共振找水技术的研究现状与发展趋势[J]. 地球物理学进展,2010,25(2):681−691

LIN Jun. Situation and progress of nuclear magnetic resonance technique for groundwater investigations[J]. Progress in Geophysics (in Chinese),2010,25(2):681−691

[3] 刘国栋,邓前辉. 电磁方法研究与勘探[M]. 北京:地震出版社,1993.

[4] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报,2019,29(9):1809−1816

HE Jishan. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):1809−1816

[5] 张春贺,刘雪军,何兰芳,等. 基于时频电磁法的富有机质页岩层系勘探研究[J]. 地球物理学报,2013,56(9):3173−3183

ZHANG Chunhe,LIU Xuejun,HE Lanfang,et al. A study of exploration organic rich shales using Time–Frequency Electromagnetic Method (TFEM)[J]. Chinese Journal of Geophysics (in Chinese),2013,56(9):3173−3183

[6] 底青云,朱日祥,薛国强,等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报,2019,62(6):2128−2138

DI Qingyun,ZHU Rixiang,XUE Guoqiang,et al. New development of the Electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics (in Chinese),2019,62(6):2128−2138

[7] 岳棋柱. 天然电磁辐射测深技术工作机理的定性解释[J]. 地球物理学进展,2006,21(4):1281−1284

YUE Qizhu. A qualitative interpretation on the mechanism of the technique of electromagnetic radiation sounding[J]. Progress in Geophysics (in Chinese),2006,21(4):1281−1284

[8] 杨庆锦,王招香. 大地电场岩性测深原理及方法技术的探讨[J]. 地球物理学进展,1999,14(3):79−88

YANG Qingjin,WANG Zhaoxiang. Probing into the principle and the technology of electrotelluric lithology sounde[J]. Progress in Geophysics (in Chinese),1999,14(3):79−88

[9] 傅良魁. 岩性电测深法及其在我国的试用效果[J]. 物探与化探,1986,10(3):183−192

FU Liangkui. The Petro–Sonde technique and its test result in China[J]. Geophysical & Geochemical Exploration,1986,10(3):183−192

[10] 胥值礼,孟庆敏,崔志强,等. 大地极化声子测深技术的调研与试用[J]. 物探与化探,2014,38(4):758−763

XU Zhili,MENG Qingmin,CUI Zhiqiang,et al. The investigation and trial utilization of geopolariton sensing technology[J]. Geophysical & Geochemical Exploration,2014,38(4):758−763

[11] 王文祥,杨武洋. 瞬论与天然电磁波法勘探:未来的地质勘探革命从这里开始[M]. 西安:陕西人民出版社,2002.

[12] 侯贵廷,衣学磊,钱祥麟. 超长电磁波遥测技术在渤海深部油气勘探中的应用[J]. 北京大学学报(自然科学版),2001,37(1):81−86

HOU Guiting,YI Xuelei,QIAN Xianglin. The application of ultra–long electromagnetic wave remote sensing to deep petroleum exploration under Bohai Sea[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2001,37(1):81−86

[13] 李百寿,秦其明,叶霞,等. 安徽淮北煤矿富水区被动式超低频电磁探测结果解析[J]. 地质与勘探,2009,45(4):431−436

LI Baishou,QIN Qiming,YE Xia,et al. Analysing the result of the passive SLF electromagnetic exploration experiments at a mine water–rich area in Huaibei City,Anhui Province[J]. Geology and Exploration,2009,45(4):431−436

[14] 秦其明,李百寿,崔容菠,等. 地热井的天然源超低频电磁探测影响因素分析[J]. 地球物理学报,2010,53(3):685−694

QIN Qiming,LI Baishou,CUI Rongbo,et al. Analysis of factors affecting natural source SLF electromagnetic exploration at geothermal wells[J]. Chinese Journal of Geophysics (in Chinese),2010,53(3):685−694

[15] 李庆忠. 对Petro–Sonde岩性探测技术的质疑[J]. 石油地球物理勘探,1996,31(2):283−306

LI Qingzhong. Questioning the applicability of Petro–Sonde technique[J]. Oil Geophysical Prospecting,1996,31(2):283−306

[16] 刘洪. 只测天然水平电场提取地下各深度信息的一种可能方案[J]. 地球物理学报,1991,34(1):120−124

LIU Hong. Toward extract the delicate underground information from only nature horizontal electric field[J]. Chinese Journal of Geophysics (in Chinese),1991,34(1):120−124

[17] 宋本钦,李培军,秦其明,等. 超低频电磁探测信号能量的计算及其地质应用[J]. 中国地质,2008,35(6):1315−1321

SONG Benqin,LI Peijun,QIN Qiming,et al. The calculation of ultra–low electromagnetic signal energy and its geological applications[J]. Geology in China,2008,35(6):1315−1321

[18] 严家斌,刘贵忠. 天然大地电磁场时间序列的分形特征[J]. 煤田地质与勘探,2007,35(2):66−69

YAN Jiabin,LIU Guizhong. Fractal characteristic of time series of nature field[J]. Coal Geology & Exploration,2007,35(2):66−69

[19] 袁源,汪嘉文,朱德昇,等. 顶煤放落过程煤矸声信号特征提取与分类方法[J]. 矿业科学学报,2021,6(6):711−720

YUAN Yuan,WANG Jiawen,ZHU Desheng,et al. Feature extraction and classification method of coal gangue acoustic signal during top coal caving[J]. Journal of Mining Science and Technology,2021,6(6):711−720

[20] 傅良魁. 电法勘探教程[M]. 北京:地质出版社,1990.

[21] 曹宝,秦其明,李百寿,等. 天然超低频电磁场日夜交替及其稳定性分析[J]. 北京大学学报(自然科学版),2008,44(6):897−901

CAO Bao,QIN Qiming,LI Baishou,et al. Day and night alternation of natural ultra–low frequency electromagnetic field and its stability analysis[J]. Acta Scientiarum Naturalism Universitatis Pekinensis,2008,44(6):897−901

[22] 张幼振,张宁,邵俊杰,等. 基于钻进参数聚类的含煤地层岩性模糊识别[J]. 煤炭学报,2019,44(8):2328−2335

ZHANG Youzhen,ZHANG Ning,SHAO Junjie,et al. Fuzzy identification of coal−bearing strata lithology based on drilling parameter clustering[J]. Journal of China Coal Society,2019,44(8):2328−2335

[23] 李玉莹,刘笑颜,谷剑英,等. 基于双模式反演方法的煤系地层顶底板岩性识别:以寺河矿区3号煤层为例[J]. 矿业科学学报,2018,3(6):515−520

LI Yuying,LIU Xiaoyan,GU Jianying,et al. Identification of roof and floor lithology of coal measures strata based on double modes inversion method:A case of No.3 coal seam in Sihe mining area[J]. Journal of Mining Science and Technology,2018,3(6):515−520

[24] 武强,王金华,刘东海,等. 煤层底板突水评价的新型实用方法Ⅳ:基于 GIS 的 AHP 型脆弱性指数法应用[J]. 煤炭学报,2009,34(2):233−238

WU Qiang,WANG Jinhua,LIU Donghai,et al. A new practical methodology of the coal floor water bursting evaluating IV:The application of AHP vulnerable index method based on GIS[J]. Journal of China Coal Society,2009,34(2):233−238

[25] 王玉喜. 一种大地电磁双层阵列扫频式频率处理方法与装置:CN201510594859. 4[P]. 2017-05-31.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.