•  
  •  
 

Coal Geology & Exploration

Abstract

In order to meet the requirements of geosteering drilling with LWD azimuth gamma, the response value of gamma ray intensity under different surrounding rock thicknesses and absorption coefficients was studied by numerical simulation. Meanwhile, the variation of special and physical characteristics reflected by API value measured by gamma detector under the radioactive formation conditions was simulated and analyzed. On this basis, the geological model of the three layers of coal, mudstone and limestone of 8-sectors azimuth gamma ray drilling was established to simulate the identification process of roof and floor of coal bed drilled. The simulation results show that the gamma ray intensity is reduced by half when the absorption coefficient of rock layer is changed from 0.08 to 0.10. Generally, the gamma amplitude could reflect the lithology of the drilled formation, and the upper and lower gamma change order can indicate the location of roof, floor and interface of the coal bed penetrated. In the case of penetration at small angle, the change of physical properties of the 8 m, 6 m and 2 m formation ahead of drilling could be monitored if the distance from detector to bit is 1 m, 3 m and 7 m respectively. The simulation of bedding drilling could provide technical guidance for the geosteering project, so as to improve the drilling efficiency and reduce the invalid footage.

Keywords

LWD azimuth gamma, 8-sectors azimuth, influence of surrounding rock, drilling simulation, roof and floor identification

DOI

10.12363/issn.1001-1986.21.04.0228

Reference

[1] 赵平,郭永旭,张秋梅. 随钻测井技术新进展[J]. 国外测井技术,2013(2):7−13

ZHAO Ping,GUO Yongxu,ZHANG Qiumei. Recent advances in logging while drilling[J]. World Well Logging Technology,2013(2):7−13

[2] 陈刚,杨雪,潘保芝,等. 井眼轨迹计算及可视化研究现状[J]. 世界地质,2015,34(3):830−841

CHEN Gang,YANG Xue,PAN Baozhi,et al. Status of calculation and visualization research on well trajectory[J]. Global Geology,2015,34(3):830−841

[3] GEOFF W,STUART G,TAMIR E H. Proceedings of offshore Europe:A new integrated LWD platform delivers improved drilling efficiency,well placement,and formation evaluation services[C]. Society of Petroleum Engineers Offshore Europe,2005.

[4] 杨培杰. 地质导向钻井随钻井眼轨迹预测方法研究[D]. 青岛:中国石油大学(华东),2005.

YANG Peijie. Geo–steering drilling drilling trajectory prediction method research[D]. Qingdao:China University of Petroleum (East China),2005.

[5] 郭爱煌. 顺煤层钻进监测技术[J]. 煤炭科学技术,2000,28(5):1−4

GUO Aihuang. Measuring technology for bore hole drilling along seam[J]. Coal Science and Technology,2000,28(5):1−4

[6] 廖可鹏,黎铖,张艳萍,等. 近钻头方向伽马导向工具在煤层气水平井的应用[J]. 中国煤层气,2018,15(6):7−10

LIAO Kepeng,LI Cheng,ZHANG Yanping,et al. Application of near–bit gamma steering tool in CBM horizontal well[J]. China Coalbed Methane,2018,15(6):7−10

[7] 黄隆基. 放射性测井原理[M]. 北京:石油大学出版社,1985.

[8] 石智军,姚宁平,叶根飞. 煤矿井下瓦斯抽采钻孔施工技术与装备[J]. 煤炭科学技术,2009,37(7):1−4

SHI Zhijun,YAO Ningping,YE Genfei. Construction technology and equipment of gas drainage borehole drilling in underground coal mine[J]. Coal Science and Technology,2009,37(7):1−4

[9] 陈刚,王小龙,汪凯斌,等. 煤矿井下随钻方位伽马仪器刻度及顺煤层钻进模拟[J]. 中国矿业,2015,24(增刊1):384−388

CHEN Gang,WANG Xiaolong,WANG Kaibin,et al. Coal mine down–hole LWD azimuth gamma instrument calibration and coal seam drilling simulation[J]. China Mining Magazine,2015,24(Sup.1):384−388

[10] 袁超. 随钻方位伽马测井方法基础研究[D]. 青岛:中国石油大学(华东),2012.

YUAN Chao. Fundamental study on LWD azimuth gamma ray well logging[D]. Qingdao:China University of Petroleum (East China),2012.

[11] 姚文彬,李辉,尚捷,等. 随钻自然伽马测井仪研制[J]. 电子测量技术,2013,36(6):42−45

YAO Wenbin,LI Hui,SHANG Jie,et al. Development of natural gamma tool used in logging while drilling[J]. Electronic Measurement Technology,2013,36(6):42−45

[12] 丁次乾. 矿场地球物理[M]. 北京:石油大学出版社,2008.

[13] 冯启宁,鞠晓东,柯式镇,等. 测井仪器原理[M]. 北京:石油大学出版社,1991.

[14] 杨全进. 随钻自然伽马测量仪及其刻度的研究[D]. 青岛:中国石油大学(华东),2006.

YANG Quanjin. Research on MWD gamma–ray tool & the calibration method for it[D]. Qingdao:China University of Petroleum (East China),2006.

[15] 王芝英. 核电子技术原理[M]. 北京:原子能出版社,1996.

[16] 张勇,高佳佳,常俊杰. 高瓦斯矿井覆岩两带高度数值模拟分析与实践[J]. 中州煤炭,2015(1):1−3

ZHANG Yong,GAO Jiajia,CHANG Junjie. Numerical simulation analysis on“two zone”height in high gas mine and its practice[J]. Zhongzhou Coal,2015(1):1−3

[17] 黄浩,王经明. 煤层底板隐伏断层突水的物理实验研究[J]. 华北科技学院学报,2015,12(1):11−16

HUANG Hao,WANG Jingming. Research on water inrush from the blind fault of coal floor by physical experiment[J]. Journal of North China Institute of Science and Technology,2015,12(1):11−16

[18] 郝世俊,段会军,莫海涛,等. 大直径高位定向长钻孔瓦斯抽采技术及实践[J]. 煤田地质与勘探,2020,48(6):243−248

HAO Shijun,DUAN Huijun,MO Haitao,et al. Gas drainage technology and practice analysis of large diameter high position directional long borehole[J]. Coal Geology & Exploration,2020,48(6):243−248

[19] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206

CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.