•  
  •  
 

Coal Geology & Exploration

Authors

LIU Cheng, CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China; CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
DING Wangui, China United Coalbed Methane Company Limited, Beijing 100011, ChinaFollow
ZHANG Jian, CNOOC Research Institute Company Limited, Beijing 100028, China
CHEN Xin, CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China; CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
WU Peng, China United Coalbed Methane Company Limited, Beijing 100011, China
LIU Xueqing, CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China; CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
LI Yangbing, CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China; CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
MA Litao, CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China; CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
HU Weiqiang, CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China; CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
KONG Wei, CNOOC EnerTech-Drilling & Production Co., Tianjin 300452, China; CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China
LI Yong, College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China

Abstract

In order to reveal the micro-pore structure characteristics of marine-continental transitional shale and its main controlling factors in the eastern margin of Ordos Basin, and to enrich the understanding of pore development characteristics and pore structure of marine-continental transitional coal-bearing shale in the block, scanning electron microscope, high-pressure mercury injection and liquid nitrogen adsorption analysis were used to characterize the micro-pore structure characteristics of shale in Linxing area. Furthermore, porosity, total content of organic carbon, mineral content, clay relative content and organic matter maturity were tested to study the main controlling factors of development of shale pore structure. The results show that there are intra-granular pores, intergranular pores, dissolution pores and micro-cracks developed in the shale. There are occasional pores and micro-cracks in the organic matter, when it is associated with minerals, micro-cracks develop around the shale. The total pore volume of shale is between 0.001 46 mL/g and 0.010 81 mL/g, the mesoporous proportion is 81.9%, and the specific surface area is between 0.35-3.65 m2/g in the study area. The pore size distribution is dominated by single peak type, the distribution range is mainly within 200 nm, and the main peak pore size is about 45 nm. The pore connectivity of shale in Benxi Formation and Taiyuan Formation is better than that Shanxi Formation, the macro-pore ratio of shale in Taiyuan Formation is better than that in Benxi Formation and Shanxi Formation. The total organic carbon content has a complex effect on the development of shale pore, but it has a positive effect on macro-pore development. The brittle mineral content of shale have positive effect on total pore and mesoporous development, while the clay mineral content has negative effects on mesoporous development. Brittle mineral and clay mineral control the development degree of pores in shale mainly by affecting the development of mesoporous pores. The study of qualitative-quantitative multi-scale characterization of shale pore structure and its controlling factors has important guiding significance for the evaluation, sweet spot optimization and development of marine-continental transitional shale gas resources in Linxing area, and enrich the geological understanding of marine-continental transitional shale reservoir.

Keywords

shale, pore structure, pore size distribution, mercury injection, liquid nitrogen adsorption, Linxing area

DOI

10.3969/j.issn.1001-1986.2021.06.005

Reference

[1] ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. 邹才能, 赵群, 丛连铸, 等. 中国页岩气的开发进展、开发潜力及发展前景[J]. 天然气工业, 2021, 41(1): 1-14.

[2] ZHU Yanming, WANG Yang, CHEN Shangbin, et al. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs: A case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers, 2016, 23(1): 154-163. 朱炎铭, 王阳, 陈尚斌, 等. 页岩储层孔隙结构多尺度定性-定量综合表征: 以上扬子海相龙马溪组为例[J]. 地学前缘, 2016, 23(1): 154-163.

[3] CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444.

[4] CHEN Shangbin, XIA Xiaohong, QIN Yong, et al. Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5): 760-765. 陈尚斌, 夏筱红, 秦勇, 等. 川南富集区龙马溪组页岩气储层孔隙结构分类[J]. 煤炭学报, 2013, 38(5): 760-765.

[5] ZHAO Difei. Quantitative characterization of pore structure of shale reservoirs in the Lower Paleozoic Wufeng-Longmaxi Formation of the east Sichuan area[D]. Xuzhou: China University of Mining & Technology, 2020. 赵迪斐. 川东下古生界五峰组-龙马溪组页岩储层孔隙结构精细表征[D]. 徐州: 中国矿业大学, 2020.

[6] FU Changqing, ZHU Yanming, CHEN Shangbin, et al. Shale gas occurrence characteristics and exploration significance of WX2 well in the northeast Chongqing[J]. Geological Journal of China Universities, 2016, 22(4): 679-689. 付常青, 朱炎铭, 陈尚斌, 等. 渝东北地区WX2井页岩气赋存特征及其勘探指示意义[J]. 高校地质学报, 2016, 22(4): 679-689.

[7] DAI Jinxing, DONG Dazhong, NI Yunyan, et al. Some essential geological and geochemical issues about shale gas research in China[J]. Natural Gas Geoscience, 2020, 31(6): 745-760. 戴金星, 董大忠, 倪云燕, 等. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.

[8] XUE Chunqi, WU Jianguang, ZHONG Jianhua, et al. Characteristics of reservoir variability of transitional and continental shale, Shanxi Formation, Linxing and Shenfu area, northeastern Ordos Basin[J]. Journal of Central South University(Science and Technology), 2020, 51(4): 998-1011. 薛纯琦, 吴建光, 钟建华, 等. 海陆交互相与陆相页岩储层差异性特征: 以鄂尔多斯盆地东北部临兴-神府工区山西组为例[J]. 中南大学学报(自然科学版), 2020, 51(4): 998-1011.

[9] WANG Weilin, DONG Li, TAN Chengqian, et al. Developmental characteristics and dominant factors of fractures in marine-continental transitional facies tight sandstone reservoirs in heavily deformed areas: A case study[J]. Arabian Journal of Geosciences, 2020, 13: 473.

[10] GE Taoyuan, PAN Jienan, WANG Kai, et al. Heterogeneity of pore structure of Late Paleozoic transitional facies coal-bearing shale in the southern North China and its main controlling factors[J]. Marine and Petroleum Geology, 2020, 122: 104710.

[11] YU Yuxi, LUO Xiaorong, LEI Yuhong, et al. Characterization of lacustrine shale pore structure: An example from the Upper-Triassic Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(4): 716-726. 俞雨溪, 罗晓容, 雷裕红, 等. 陆相页岩孔隙结构特征研究: 以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27(4): 716-726.

[12] DAI Jinxing, NI Yunyan, DONG Dazhong, et al. 2021-2025 is a period of great development of China's natural gas industry: Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China[J]. Natural Gas Geoscience, 2021, 32(1): 1-16. 戴金星, 倪云燕, 董大忠, 等. "十四五"是中国天然气工业大发展期: 对中国"十四五"天然气勘探开发的一些建议[J]. 天然气地球科学, 2021, 32(1): 1-16.

[13] SONG Yan, LI Zhuo, JIANG Zhenxue, et al. Progress and development trend of unconventional oil and gas geological research[J]. Petroleum Exploration and Development, 2017, 44(4): 638-648. 宋岩, 李卓, 姜振学, 等. 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, 2017, 44(4): 638-648.

[14] DENG Ende, YI Tongsheng, YAN Zhihua, et al. Accumulation condition and shale gas potential of the marine-terrestrial transitional facies: A case study of Jinshacan 1 well of Longtan Formation in northern Guizhou[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1166-1181. 邓恩德, 易同生, 颜智华, 等. 海陆过渡相页岩气聚集条件及勘探潜力研究: 以黔北地区金沙参1井龙潭组为例[J]. 中国矿业大学学报, 2020, 49(6): 1166-1181.

[15] LIU Shiming, TANG Shuheng, HUO Ting, et al. Pore structure and fractal characteristics of the Upper Carboniferous shale, eastern Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1069-1081. 刘世明, 唐书恒, 霍婷, 等. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.

[16] ZHAO Bangsheng, LI Rongxi, QIN Xiaoli, et al. Characteristics of shale reservoirs in the Upper Paleozoic Shanxi Formation, central Ordos Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1140-1151. 赵帮胜, 李荣西, 覃小丽, 等. 鄂尔多斯盆地中部上古生界山西组页岩储层特征[J]. 沉积学报, 2019, 37(6): 1140-1151.

[17] HU Weiqiang, LI Yangbing, CHEN Xin, et al. Origin and source of natural gas in the Upper Paleozoic in Linxing area, Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(1): 26-36. 胡维强, 李洋冰, 陈鑫, 等. 鄂尔多斯盆地临兴地区上古生界天然气成因及来源[J]. 天然气地球科学, 2020, 31(1): 26-36.

[18] FU Ning, YANG Shuchun, HE Qing, et al. High-efficiency reservoir formation conditions of tight sandstone gas in Linxing-Shenfu blocks on the east margin of Ordos Basin[J]. Acta Petrolei Sinica, 2016, 37(Sup. 1): 111-121. 傅宁, 杨树春, 贺清, 等. 鄂尔多斯盆地东缘临兴-神府区块致密砂岩气高效成藏条件[J]. 石油学报, 2016, 37(增刊1): 111-121.

[19] YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455. 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455.

[20] WEI Xiangfeng, LIU Ruobing, ZHANG Tingshan, et al. Micro-pores structure characteristics and development control factors of shale gas reservoir: A case of Longmaxi Formation in XX area of southern Sichuan and northern Guizhou[J]. Natural Gas Geoscience, 2013, 24(5): 1048-1059. 魏祥峰, 刘若冰, 张廷山, 等. 页岩气储层微观孔隙结构特征及发育控制因素: 以川南-黔北XX地区龙马溪组为例[J]. 天然气地球科学, 2013, 24(5): 1048-1059.

[21] ZOU Caineng, ZHU Rukai, BAI Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.

[22] SUN Lei, GAO Yuqiong, PAN Yi, et al. Surface fractal characteristics and their influence on shale nanopores[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(6): 85-91. 孙雷, 高玉琼, 潘毅, 等. 页岩纳米孔隙表面分形特征及其影响因素[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 85-91.

[23] FU Changqing, ZHU Yanming, CHEN Shangbin. Pore structure and fractal features of Hetang Formation shale in western Zhejiang[J]. Journal of China University of Mining & Technology, 2016, 45(1): 77-86. 付常青, 朱炎铭, 陈尚斌. 浙西荷塘组页岩孔隙结构及分形特征研究[J]. 中国矿业大学学报, 2016, 45(1): 77-86.

[24] WU Yanyan, GAO Yuqiao, CHEN Yunyan, et al. Characteristics and geological significance of pore and fracture of shale gas reservoirs in Wufeng-Longmaxi Formation, southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(1): 62-71. 吴艳艳, 高玉巧, 陈云燕, 等. 渝东南地区五峰-龙马溪组页岩气储层孔缝发育特征及其地质意义[J]. 油气藏评价与开发, 2021, 11(1): 62-71.

[25] MA Yong, ZHONG Ningning, CHENG Lijun, et al. Pore structure of two organic-rich shales in southeastern Chongqing area: Insight from Focused Ion Beam Scanning Electron Microscope(FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1): 109-116. 马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征: 来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37(1): 109-116.

[26] FU Xuehai, QIN Yong, WEI Chongtao. Coalbed methane geology[M]. Xuzhou: China University of Mining and Technology Press, 2007. 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.

[27] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids(Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758.

[28] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.

[29] LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444. 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436-444.

[30] YU Bingsong. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013, 20(4): 211-220. 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4): 211-220.

[31] XI Zhaodong, TANG Shuheng, LI Jun, et al. Investigation of pore structure and fractal characteristics of marine-continental transitional shale in the east-central of Qinshui Basin[J]. Natural Gas Geoscience, 2017, 28(3): 366-376. 郗兆栋, 唐书恒, 李俊, 等. 沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28(3): 366-376.

[32] JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. Pore structure and gas content of typical marine and continental shale reservoirs in China[M]. Beijing: Science Press, 2018. 姜振学, 唐相路, 李卓, 等. 中国典型海相和陆相页岩储层孔隙结构及含气性[M]. 北京: 科学出版社, 2018.

[33] ZHANG Hui, LIN Bowei, BIAN Jianling, et al. Comparative study on organic-rich marine and continental shale: The case of Lower Paleozoic in south China and Carboniferous-Permian shale in North China[J]. Coal Geology & Exploration, 2018, 46(6): 88-95. 张慧, 林伯伟, 卞建玲, 等. 富有机质海相与陆相页岩的对比研究: 以南方早古生代和华北石炭-二叠纪页岩为例[J]. 煤田地质与勘探, 2018, 46(6): 88-95.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.