•  
  •  
 

Coal Geology & Exploration

Abstract

The intelligent drilling technology and equipment are important part of the intelligent construction of coal mine, and it is the advanced technology and equipment urgently needed by coal mine enterprises to further promote the work of reducing personnel and increasing efficiency. The phased achievements of underground intelligent drilling technology and equipment during the 13th five-year plan are systematically summarized, and the development status of key technical equipment such as automatic drilling rig, parameter monitoring of measurement while drilling(MWD) system, rotary steerable system are introduced. The key factors restricting the research and development (R & D) and application of intelligent drilling technology and equipment are comprehensively analyzed: low level of drilling rig intelligent, few types of MWD data, and difficulty in integrating and controlling multi systems. On this basis, it is proposed to deeply promote the combination of digital, networked and intelligent technologies with traditional pit drilling technologies, strengthen multidisciplinary integration and collaborative innovation capabilities, and continuously strengthen the cultivation of intelligent drilling technology and equipment research and application talents. With technical equipment as the support, digital platform as the guarantee, and talent team construction as the basis, the problems will be tackled in the following aspects: the intelligent drilling rig, the technology of high-precision data acquisition and transmission, the technology of intelligent optimization and control of trajectory, the technology of integrated control of auxiliary related equipment, the digital drilling platform, and the underground intelligent drilling in the whole process of coal mines will be realized.

Keywords

intelligent drilling, automatic drilling rig, MWD system, rotary steerable system, research progress, development trend

DOI

10.3969/j.issn.1001-1986.2021.06.032

Reference

[1] Institute of Resources and Environmental Policy, Development Research Center of the State Council. China energy revolution progress report[R]. Beijing: Petroleum Industry Press, 2020. 国务院发展研究中心资源与环境政策研究所. 中国能源革命进展报告(2020)[R]. 北京: 石油工业出版社, 2020.

[2] LIU Feng, CAO Wenjun, ZHANG Jianming. Continuously promoting the coal mine intellectualization and the high–quality development of China's coal industry[J]. China Coal, 2019, 45(12): 32–36. 刘峰, 曹文君, 张建明. 持续推进煤矿智能化, 促进我国煤炭工业高质量发展[J]. 中国煤炭, 2019, 45(12): 32–36.

[3] SHI Zhijun, LI Quanxin, YAO Ke. Development path and key technology analysis of intelligent directional drilling in underground coal mine[J]. Journal of China Coal Society, 2020, 45(6): 2217–2224. 石智军, 李泉新, 姚克. 煤矿井下智能化定向钻探发展路径与关键技术分析[J]. 煤炭学报, 2020, 45(6): 2217–2224.

[4] LI Quanxin, LIU Fei, FANG Jun. Analysis of development framework of intelligent coal mine underground drilling technology[J]. Industry and Mine Automation, 2020, 46(10): 9–13. 李泉新, 刘飞, 方俊. 煤矿坑道智能化钻探技术发展框架分析[J]. 工矿自动化, 2020, 46(10): 9–13.

[5] WANG Qingfeng, CHEN Hang. Development and prospect on intelligent drilling technology and equipment for gas drainage[J]. Industry and Mine Automation, 2018, 44(11): 18–24. 王清峰, 陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望[J]. 工矿自动化, 2018, 44(11): 18–24.

[6] ZHANG Rui, YAO Ke, FANG Peng, et al. Key technologies for research and development of automatic drilling rig in underground coal mine[J]. Coal Science and Technology, 2019, 47(5): 59–63. 张锐, 姚克, 方鹏, 等. 煤矿井下自动化钻机研发关键技术[J]. 煤炭科学技术, 2019, 47(5): 59–63.

[7] LYU Jinjun, Xin Dezhong. Design of ZYWL-4000SY intelligent remote control automatic drilling machine[J]. Coal Mine Machinery, 2019, 40(3): 4-6. 吕晋军, 辛德忠. ZYWL-4000SY智能遥控自动钻机的设计[J]. 煤矿机械, 2019, 40(3): 4–6.

[8] National Office of Major Technical Equipment. A major breakthrough in the intellectualization of fully mechanized coal mining in China[EB/OL]. [2020-01-02] http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=10&id=113914. 国家重大技术装备办公室. 我国煤矿综采智能化取得重大突破[EB/OL]. [2020-01-02] http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=10&id=113914.

[9] WANG Guofa, LIU Feng, MENG Xiangjun, et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology, 2019, 47(8): 1–36. 王国法, 刘峰, 孟祥军, 等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术, 2019, 47(8): 1–36.

[10] YAO Ke. Intelligent drilling rig for coal mines and discussion on problems[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2020, 47(10): 48–52. 姚克. 煤矿井下智能化钻机及问题探讨[J]. 探矿工程(岩土钻掘工程), 2020, 47(10): 48–52.

[11] WANG Qingfeng, CHEN Hang, CHEN Yutao. Research on the mechanism of intelligent sensing and adaptive control in drilling condition of drilling robot[J]. Mining Safety & Environmental Protection, 2021, 48(3): 1–5. 王清峰, 陈航, 陈玉涛. 钻孔机器人钻进工况智能感知与自适应控制机理研究[J]. 矿业安全与环保, 2021, 48(3): 1–5.

[12] ZHANG Shizhai, WANG Qingwen. Design and key technology research of ZYWL–4000SY remote control drilling rig[J]. Coal Science and Technology, 2021, 49(3): 129–134. 张始斋, 王庆文. ZYWL–4000SY型遥控钻机设计及关键技术研究[J]. 煤炭科学技术, 2021, 49(3): 129–134.

[13] WANG Qingfeng, CHEN Hang. Research on automatic conveying system of large–capacity drill pipe based on path planning[J]. Mining Safety & Environmental Protection, 2020, 47(1): 1–6. 王清峰, 陈航. 基于路径规划的大容量钻杆自动输送系统研究[J]. 矿业安全与环保, 2020, 47(1): 1–6.

[14] LYU Jinjun. Research on telescopic joint of manipulator of automatic drilling machine used in coal mine[J]. Coal Technology, 2021, 40(9): 168–170. 吕晋军. 煤矿井下用自动钻机机械手伸缩关节的研究[J]. 煤炭技术, 2021, 40(9): 168–170.

[15] CHEN Yu. Research on turnover joint of manipulator of automatic drilling rig used in coal mine[J]. Coal Technology, 2021, 40(9): 139–141. 陈鱼. 煤矿井下用自动钻机机械手翻转关节的研究[J]. 煤炭技术, 2021, 40(9): 139–141.

[16] China Coal Technology and Engineering Group Corp. The full–automatic drilling rig drilled 126 meters in the soft coal seam, setting a new high in the domestic industry[EB/OL]. [2021-07-06] https://mp.weixin.qq.com/s/tZiz_ANATjxPf2a4Z7Z5Rw. 中国煤炭科工集团, 中国煤科重庆研究院. 全自动钻机在松软煤层成孔126米创国内行业新高[EB/OL]. [2021-07-06] https://mp.weixin.qq.com/s/tZiz_ANATjxPf2a4Z7Z5Rw.

[17] SHI Zhijun, YAO Ke, YAO Ningping, et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology, 2020, 48(4): 1–34. 石智军, 姚克, 姚宁平, 等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术, 2020, 48(4): 1–34.

[18] DONG Hongbo, YAO Ningping, MA Bin, et al. Research on electronically controlled automation technology of underground drilling rig for coal mine[J]. Coal Geology & Exploration, 2020, 48(3): 219–224. 董洪波, 姚宁平, 马斌, 等. 煤矿井下坑道钻机电控自动化技术研究[J]. 煤田地质与勘探, 2020, 48(3): 219–224.

[19] FANG Peng, YAO Ke, WANG Song, et al. Development of drilling parameter monitoring system for directional drilling rig in coal mine[J]. Coal Science and Technology, 2019, 47(12): 124–130. 方鹏, 姚克, 王松, 等. 煤矿井下定向钻机钻进参数监测系统研制[J]. 煤炭科学技术, 2019, 47(12): 124–130.

[20] YAO Ningping, YAO Yafeng, FANG Peng, et al. Advances and outlook of coal mine tunnel drilling equipment and technology[J]. Drilling Engineering, 2021, 48(1): 81–87. 姚宁平, 姚亚峰, 方鹏, 等. 我国煤矿坑道钻探装备技术进展与展望[J]. 钻探工程, 2021, 48(1): 81–87.

[21] YANG Lin. Research status and key technology of underground gas drainage drilling robot in coal mine[J]. Coal Mine Machinery, 2018, 39(8): 60–62. 杨林. 煤矿井下瓦斯抽采钻孔机器人研究现状及关键技术[J]. 煤矿机械, 2018, 39(8): 60–62.

[22] LI Menggang. Research on technologies of accurate localization and mapping for underground drilling robot application[D]. Xuzhou: China University of Mining and Technology, 2020. 李猛钢. 面向井下钻孔机器人应用的精确定位与地图构建技术研究[D]. 徐州: 中国矿业大学, 2020.

[23] CAYEUX E, DAIREAUX B, DVERGSNES E W, et al. Toward drilling automation: on the necessity of using sensors that relate to physical models[R]. SPE Drilling & Completion, 2013, 29(2): 163440.

[24] REEVES M E, CAMWELL P L, MCRORY J. High speed acoustic telemetry network enables real–time along string measurements, greatly reducing drilling risk[R]. SPE145566, 2011.

[25] SCHILS S, TEELKEN R, VAN BURKLEC B, et al. The use of wired drill pipe technology in a complex drilling environment increased drilling efficiency and reduced well times[R]. SPE178863, 2016.

[26] LEI Xiaorong. "Hole–well–ground"integrated intelligent drilling system and key technologies[J]. Coal Science and Technology, 2020, 48(7): 274–281. 雷晓荣. "孔–井–地"一体化智能钻进系统及关键技术[J]. 煤炭科学技术, 2020, 48(7): 274–281.

[27] LI Quanxin, SHI Zhijun, XU Chao, et al. Efficient drilling technique of 2 311 m ultra–long directional borehole along coal seam[J]. Coal Science and Technology, 2018, 46(4): 27–32. 李泉新, 石智军, 许超, 等. 2 311 m顺煤层超长定向钻孔高效钻进技术[J]. 煤炭科学技术, 2018, 46(4): 27–32.

[28] SHI Zhijun, DONG Shuning, YANG Junzhe, et al. Key technology of drilling in–seam directional borehole of 3 000 m in underground coal mine[J]. Coal Geology & Exploration, 2019, 47(6): 1–7. 石智军, 董书宁, 杨俊哲, 等. 煤矿井下3 000 m顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探, 2019, 47(6): 1–7.

[29] FANG Jun. Mine cable geosteering MWD device and geological directional drilling technology[J]. Coal Science and Technology, 2017, 45(11): 168–173. 方俊. 矿用有线地质导向随钻测量装置及钻进技术[J]. 煤炭科学技术, 2017, 45(11): 168–173.

[30] WANG Xiaolong. Design and experiment of mine azimuth gamma logging instrument while drilling[J]. Coal Science and Technology, 2016, 44(8): 161–167. 王小龙. 矿用随钻方位伽马测井仪的设计与试验[J]. 煤炭科学技术, 2016, 44(8): 161–167.

[31] LIU Jianlin, LI Quanxin, YANG Weifeng, et al. Construction and data processing method of coal rock interface detection directional hole in coal mining face: CN111485825A[P]. 2020-08-04. 刘建林, 李泉新, 杨伟锋, 等. 采煤工作面煤岩界面探测定向孔设计施工与数据处理方法: CN111485825A[P]. 2020-08-04.

[32] ZHU Mengbo, CHENG Jianyuan, ZHANG Yi, et al. Iterative modeling method of coal seam under the constraint of near horizontal borehole trajectory: CN111814298A[P]. 2020-10-23. 朱梦博, 程建远, 张意, 等. 近水平钻孔轨迹约束下采煤工作面煤层迭代建模方法: CN111814298A[P]. 2020-10-23.

[33] WANG Minsheng, GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica, 2020, 41(4): 505–512. 王敏生, 光新军. 智能钻井技术现状与发展方向[J]. 石油学报, 2020, 41(4): 505–512.

[34] GE Shirong, HU Eryi, PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society, 2020, 45(1): 455–463. 葛世荣, 胡而已, 裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报, 2020, 45(1): 455–463.

[35] LIAO Xiufeng, KHANDELWAL M, YANG Haiqing, et al. Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques[J]. Engineering with Computers, 2020, 36: 499–510.

[36] LYU Zehao, SONG Xianzhi, GENG Lidong, et al. Optimization of multilateral well configuration in fractured reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1153–1164.

[37] GAN Chao, CAO Weihua, WU Min, et al. Two–level intelligent modeling method for the rate of penetration in complex geological drilling process[J]. Applied Soft Computing, 2019, 80: 592–602.

[38] ZHANG Jianming, CAO Ming, CHEN Xiaoming. Development status and tendency on digitalized drilling technology in underground coal mine[J]. Coal Science and Technology, 2017, 45(5): 47–51. 张建明, 曹明, 陈晓明. 煤矿井下数字化钻进技术发展现状与趋势[J]. 煤炭科学技术, 2017, 45(5): 47–51.

[39] LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. 李根生, 宋先知, 田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术, 2020, 48(1): 1–8.

[40] LIU Zaibin, LIU Cheng, LIU Wenming, et al. Multi–attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society, 2020, 45(7): 2628–2635. 刘再斌, 刘程, 刘文明, 等. 透明工作面多属性动态建模技术[J]. 煤炭学报, 2020, 45(7): 2628–2635.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.