•  
  •  
 

Coal Geology & Exploration

Abstract

In view of the problem of low detection accuracy of room-pillar goafs in shallow coal seams in northern Shaanxi, the seismic physical model is designed for physical simulation according to the principle of similarity ratio of geometry size and wave impedance. Through a large number of ratio tests of similar materials, the ratio of epoxy resin and silicone rubber is determined as 1 : 1.2 for similar materials of low velocity loess layer, 1 : 0.2 : 0.6 for epoxy resin, silicone rubber and talc for mudstone, 1 : 0.4 for epoxy resin and silicone rubber for coal seams, 1 : 0.8 for epoxy resin and talc for argillaceous sandstone, and 1 : 1.2 for epoxy resin and talc for sandstone. The numerical control engraving machine is used to carve the coal seam goaf and roadway to ensure high precision. By using the pouring method combined with the bonding method, the sandwich layer of goafs and coal seams is made to solve the problem of air model production in the goaf roadway, and the seismic physical model of the room-pillar goaf roadway is completed. The single-layer shape measurement accuracy of the physical model measures 0.2 mm, the speed relative error less than 5%, and the density absolute error ±0.3 g/cm3, which meets the design requirements of the model.

Keywords

room-pillar goaf, ratio of similar materials, seismic physical model, model construction

DOI

10.3969/j.issn.1001-1986.2021.06.012

Reference

[1] LIU Qingzhou. Research on structural stability of fully mechanized mining surrounding rock in shallow buried and close distance room and pillar goaf[D]. Xi'an: Xi'an University of Science and Technology, 2020. 刘清洲. 浅埋近距离房柱式采空区之上综采围岩结构稳定性研究[D]. 西安: 西安科技大学, 2020.

[2] ZHAO Yanling, LI Sucui, XIAO Wu. Visualization analysis and prospect of the current research situation in the field of coal mining subsidence in China[J]. Coal Science and Technology, 2020, 48(1): 202–210. 赵艳玲, 李素萃, 肖武. 我国采煤沉陷领域研究现状可视化分析与展望[J]. 煤炭科学技术, 2020, 48(1): 202–210.

[3] CHENG Jianyuan, SUN Hongxing, ZHAO Qingbiao, et al. The detection technology of excavated region in coal mine and case study[J]. Journal of China Coal Society, 2008, 33(3): 251–255. 程建远, 孙洪星, 赵庆彪, 等. 老窑采空区的探测技术与实例研究[J]. 煤炭学报, 2008, 33(3): 251–255.

[4] QIN Si, CHENG Jianyuan, HU Jiwu, et al. Coal-seam-ground-seismic for advance detection of goaf and roadway[J]. Journal of China Coal Society, 2015, 40(3): 636–639. 覃思, 程建远, 胡继武, 等. 煤矿采空区及巷道的井地联合地震超前勘探[J]. 煤炭学报, 2015, 40(3): 636–639.

[5] WANG Lei. Stability evaluation and numerical simulation of room and pillar goaf: A case study of Shenghai coal mine in Fugu County, Northern Shaanxi[J]. Energy and Energy Conservation, 2020(10): 2–6. 王磊. 房柱式采空区稳定性评价与数值模拟: 以陕北府谷县盛海煤矿为例[J]. 能源与节能, 2020(10): 2–6.

[6] XUE Guoqiang, PAN Dongming, YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187–2192. 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 2187–2192.

[7] ZHANG Zhao. Case study on seismic exploration effect under goaf with different years[J/OL]. Coal Geology & Exploration. https://kns.cnki.net/kcms/detail/61.1155.P.20210715.1032.002.html 张昭. 不同年限采空区下地震勘探效果实例研究[J/OL]. 煤田地质与勘探. https://kns.cnki.net/kcms/detail/61.1155.P.20210715.1032.002.html

[8] WU Mansheng, DI Bangrang, WEI Jianxin, et al. Large-scale complex physical modeling and precision analysis[J]. Applied Geophysics, 2014, 11(2), 245–251.

[9] ZHANG Fuhong, HUANG Ping, HUANG Kaiwei, et al. The construction of complex fracture geophysical model and the gathering and processing of seismic data[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 87–95. 张福宏, 黄平, 黄开伟, 等. 复杂裂缝地球物理模型制作及地震采集处理研究[J]. 物探与化探, 2018, 42(1): 87–95.

[10] ZHAO Hongru, TANG Wenbang, GUO Tieshuan. Technology and application of ultrasonic seismic modeling[M]. Beijing: Petroleum Industry Press, 1986. 赵鸿儒, 唐文榜, 郭铁栓. 超声地震模型试验技术及应用[M]. 北京: 石油工业出版社, 1986.

[11] DI Bangrang, XU Xiucang, WEI Jianxin. A seismic modeling analysis of wide and narrow 3D observation systems for channel sand bodies[J]. Applied Geophysics, 2008, 5(3): 294–300.

[12] WEI Jianxin, DI Bangrang. Properties of materials forming the 3D geological model in seismic physical model[J]. Geophysical Prospecting for Petroleum, 2006, 45(6): 586–590. 魏建新, 狄帮让. 地震物理模型中三维地质模型材料特性研究[J]. 石油物探, 2006, 45(6): 586–590.

[13] LI Zhihong, ZHU Hailong, ZHAO Qun, et al. Study and materialization of new seismic physical model building materials[J]. Progress in Geophysics, 2009, 24(2): 408–417. 李智宏, 朱海龙, 赵群, 等. 地震物理模型材料研制与应用研究[J]. 地球物理学进展, 2009, 24(2): 408–417.

[14] PEI Yuchong, YANG Qinyong, ZHAO Qun, et al. Research on silica micro-powders modified 3D seismic physical model materials[J]. Progress in Geophysics, 2016, 31(1): 455–460. 裴宇翀, 杨勤勇, 赵群, 等. 硅微粉改性新型三维地震物理模型材料特性研究[J]. 地球物理学进展, 2016, 31(1): 455–460.

[15] DONG Jinyu, YANG Jihong, YANG Guoxiang, et al. Research on similar material proportioning test of model test based on orthogonal design[J]. Journal of China Coal Society, 2012, 37(1): 44–49. 董金玉, 杨继红, 杨国香, 等. 基于正交设计的模型试验相似材料的配比试验研究[J]. 煤炭学报, 2012, 37(1): 44–49.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.