•  
  •  
 

Coal Geology & Exploration

Abstract

A seismic physical simulation is carried out for the complex seismic response of the coal seam of Yan'an Formation in the loess tableland. First, the physical model materials for the dry layer near the surface of the loess tableland and the coal seam are developed. After several tests, a mixture of silicone rubber with silicon aerogel powder is selected to simulate the surface of the loess tableland, and the mixture with ultra-fine carbon powder added to silicone rubber is used to simulate the low-speed and low-density coal seam. Through the methods of molds control layer, layer by layer pouring, three-dimensional carving of undulating strata, a three-dimensional seismic physical model of the typical geological structure in the loess tableland is constructed, and seismic physical simulation and seismic imaging analysis are carried out. The results show that there is a strong reflection amplitude because of the great difference in impedance between the coal seam and surrounding rock of Yan'an Formation. Therefore, it has a strong shielding effect on the imaging of the lower strata. There are internal multiple waves in the multiple sets of coal seams, affecting the imaging of the underlying layer. The calculation time window greater than 40 ms is more favorable to coal seam identification when the coal seam is described by the seismic amplitude attribute. But there are some traps in predicting coal seam thickness by seismic attributes because of the coal seams tuning effect.

Keywords

seismic physical modeling, Yan'an Formation coal seam, loess tableland surface, amplitude attribute

DOI

10.3969/j.issn.1001-1986.2021.06.010

Reference

[1] LIU Zhanyong, JIANG Tao, SONG Hongzhu, et al. Analysis of explorative and exploitative degree of China coal resources[J]. Coal Geology & Exploration, 2013, 41(5): 1–5. 刘占勇, 江涛, 宋洪柱, 等. 中国煤炭资源勘查开发程度分析[J]. 煤田地质与勘探, 2013, 41(5): 1–5.

[2] CHENG Jianyuan, NIE Ailan, ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration, 2016, 44(6): 136–141. 程建远, 聂爱兰, 张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探, 2016, 44(6): 136–141.

[3] TENG Jiwen, SI Xiang, WANG Yuchen. Potential and future of fossil fuel exploration and development in China[J]. Geophysical Prospecting for Petroleum, 2021, 60(1): 1–12. 滕吉文, 司芗, 王玉辰. 我国化石能源勘探、开发潜能与未来[J]. 石油物探, 2021, 60(1): 1–12.

[4] CHENG Jianyuan, WANG Shouquan, SONG Guolong. The new development and foreground expectation of seismic exploration[J]. Coal Geology & Exploration, 2009, 37(2): 55–58. 程建远, 王寿全, 宋国龙. 地震勘探技术的新进展与前景展望[J]. 煤田地质与勘探, 2009, 37(2): 55–58.

[5] TENG Jiwen, QIAO Yonghu, SONG Penghan. Analysis of exploration, potential reserves and high efficient utilization of coal in China[J]. Chinese Journal of Geophysics(in Chinese), 2016, 59(12): 4633–4653. 滕吉文, 乔勇虎, 宋鹏汉. 我国煤炭需求、探查潜力与高效利用分析[J]. 地球物理学报, 2016, 59(12): 4633–4653.

[6] CHENG Jianyuan, LI Ning, HOU Shining, et al. Development status overview of seismic prospecting technology in loess tableland[J]. Coal Geology of China, 2009, 21(12): 72–76. 程建远, 李宁, 侯世宁, 等. 黄土塬区地震勘探技术发展现状综述[J]. 中国煤炭地质, 2009, 21(12): 72–76.

[7] CEHN Chaoqun, GAO Qin, HE Zhengguang, et al. The off-line seismic exploration and its application in huge-thick loess area in Ordos Basin[J]. Coal Geology & Exploration, 2017, 45(1): 143–151. 陈超群, 高秦, 何争光, 等. 鄂尔多斯盆地西南部巨厚黄土塬区非纵地震资料处理技术[J]. 煤田地质与勘探, 2017, 45(1): 143–151.

[8] BAI Wanshan, LIU Tiantian, LI Hongtao. Processing technologies of seismic data from the coalfield in loess plateau area[J]. Coal Geology & Exploration, 2014, 42(4): 82–85. 白万山, 刘田田, 李红桃. 黄土塬地区煤田地震勘探资料处理技术[J]. 煤田地质与勘探, 2014, 42(4): 82–85.

[9] ZHOU Junjie, WANG Yu, HOU Wei. 3D seismic comprehensive processing technology of coalfield in loess tableland[J]. Progress in Geophysics(in Chinese), 2016, 31(5): 2299–2305. 周俊杰, 王雨, 侯玮. 黄土塬地区煤田三维地震综合处理技术[J]. 地球物理学进展, 2016, 31(5): 2299–2305.

[10] CHEN Chaoqun, TIAN Yuanyuan, GAO Qin, et al. Frequency-division abnormal amplitude attenuation after data reconstruction based on random function and its application in the very thick loess tableland area, Ordos Basin[J]. Geophysical Prospecting for Petroleum, 2019, 58(5): 741–749. 陈超群, 田媛媛, 高秦, 等. 基于随机函数数据重构的分频异常振幅衰减技术在巨厚黄土塬区的应用[J]. 石油物探, 2019, 58(5): 741–749.

[11] XIONG Xiaojun, HE Zhenhua, HUANG Deji. The application of 3D wave equation forward and modeling[J]. Geophysical Prospecting for Petroleum, 2005, 44(6): 554–556. 熊晓军, 贺振华, 黄德济. 三维波动方程正演及模型应用研究[J]. 石油物探, 2005, 44(6): 554–556.

[12] WEI Jianxin, MOU Yongguang, DI Bangrang. Study of 3D seismic physical model[J]. Oil Geophysical Prospecting, 2002, 37(6): 556–561. 魏建新, 牟永光, 狄帮让. 三维地震物理模型的研究[J]. 石油地球物理勘探, 2002, 37(6): 556–561.

[13] DAI Shixin. Research on key technology of response characteristics of seismic attributes based on the physical model[D]. Beijing: China University of Mining and Technology, 2012. 戴世鑫. 基于物理模型的煤田地震属性响应特征的关键技术研究[D]. 北京: 中国矿业大学(北京), 2012.

[14] HAN Tanghui, DAI Shixin, LI Xiaohua, et al. Seismic physical modeling research on coal measure strata in Huainan[J]. Journal of China Coal Society, 2011, 36(4): 588–592. 韩堂惠, 戴世鑫, 李小华, 等. 淮南煤系地层地震物理模型研究[J]. 煤炭学报, 2011, 36(4): 588–592.

[15] HAN Chaoyuan. Three-Dimensional seismic exploration technology for thin coal seam: Taking the 11-2 coal seam in Zhangji coalming for example[D]. Beijing: China University of Mining & Technology(Beijing), 2011. 胡朝元. 薄煤层三维地震勘探技术: 以淮南张集矿区11-2煤为例[D]. 北京: 中国矿业大学(北京), 2011.

[16] CHEN Xiaozhi, TANG Dazhen, XU Hao, et al. Development characteristics of coal seam and their controlling factors in Yan'an Formation in Binchang area[J]. China Mining Magazine, 2011, 20(2): 110–113. 陈晓智, 汤达祯, 许浩, 等. 彬长矿区延安组煤层发育特征及其控制因素分析[J]. 中国矿业, 2011, 20(2): 110–113.

[17] WANG Xueqiu. Study on seismic wave field under complex surface conditions of special physiognomy in West China[D]. Changchun: Jilin University, 2009. 王雪秋. 复杂近地表地震波响应特征研究: 以中国西部地区为例[D]. 长春: 吉林大学, 2009.

[18] LI Zhihong, ZHU Hailong, ZHAO Qun, et al. Study and materialization of new seismic physical model building materials[J]. Progress in Geophysics, 2009, 24(2): 408–417. 李智宏, 朱海龙, 赵群, 等. 地震物理模型材料研制与应用研究[J]. 地球物理学进展, 2009, 24(2): 408–417.

[19] WEI Jianxin, DI Bangrang. Properties of materials forming the 3D geological model in seismic physical model[J]. Geophysical Prospecting for Petroleum, 2006, 45(6): 586–590. 魏建新, 狄帮让. 地震物理模型中三维地质模型材料特性研究[J]. 石油物探, 2006, 45(6): 586–590.

[20] ZHAO Qun, MA Guoqing, ZONG Xialing. Continuance data acquisition system of ultrasonic seismic physical modeling[J]. Progress in Geophysics, 2004, 19(4): 786–788. 赵群, 马国庆, 宗遐龄. 超声地震物理模型连续数据采集系统[J]. 地球物理学进展, 2004, 19(4): 786–788.

[21] DI Bangrang, WEI Jianxin, XIA Yongge. Study on effects and precision of 3D seismic physical model technique[J]. Oil Geophysical Prospecting, 2002, 37(6): 562–568. 狄帮让, 魏建新, 夏永革. 三维地震物理模型技术的效果与精度研究[J]. 石油地球物理勘探, 2002, 37(6): 562–568.

[22] ZHAO Hongru, WANG Tienan, TANG Wenbang. The developments of geophysical modeling[J]. Acta Geophysica Sinica, 1994, 37(Sup. 1): 269–276. 赵鸿儒, 王铁男, 唐文榜. 中国地球物理模型试验的发展[J]. 地球物理学报, 1994, 37(增刊1): 269–276.

[23] WANG Kaiyan, XU Qingyan, ZHANG Guifang, et al. Summary of seismic attribute analysis[J]. Progress in Geophysics, 2013, 28(2): 815–823. 王开燕, 徐清彦, 张桂芳, 等. 地震属性分析技术综述[J]. 地球物理学进展, 2013, 28(2): 815–823.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.