•  
  •  
 

Coal Geology & Exploration

Abstract

In the arid and semi-arid regions of the Western China, there is not only a shortage of water resources, but also the problems of large mine water inflow and high salinity of mine water. In order to reduce the waste of water resources in the mining activities and protect water ecological environment in the region, it is proposed to treat the mine water by deeper well recharge to the aquifers under the coal seam based on the theories and technical methods such as mine water transfer and storage, water-preserving mining and coal-water dual resource coordinated mining. A test well project was implemented in a mine in the eastern part of the Ordos Basin. The storage space characteristics of the target recharge aquifers were studied by collecting rock samples, scanning electron microscopy, rock composition analysis and mercury intrusion experiments and quantitative and qualitative methods. Then, the main controlling factors of the in-situ water pressure tests were analyzed, and the quality of mine water and the water quality of the targeted recharge aquifer were compared. Finally the hydrogeological effect of mine water recharge was verified. The research results showed that the potential transport and storage capacity of a single well of the test well could meet a certain amount of mine water recharge demand. Transfer and storage cannot only improve the water richness of the targeted aquifers, but also have a significant impact on the protection of water resources and water ecological environment in the Western China. At the same time, it can reduce the cost of advanced mine water treatment, and relieve the environmental pressure of mine water discharge, which is a typical demonstration for transfer and storage of mine water in western coal mining area.

Keywords

western China, mine water, high salinity, deep strata, transfer and storage

DOI

10.3969/j.issn.1001-1986.2021.05.002

Reference

[1] SUI Wanghua, LIANG Yankun, ZHANG Gailing, et al. Study status and outlook of risk evaluation on water inrush and sand inrush mechanism of excavation and mining[J]. Coal Science and Technology, 2011, 39(11): 5-9. 隋旺华, 梁艳坤, 张改玲, 等. 采掘中突水溃砂机理研究现状及展望[J]. 煤炭科学技术, 2011, 39(11): 5-9.

[2] WANG Yunsuo, XU Huazheng, WANG Chuangang, et al. Characteristics of the salinity and distribution of the Neopaleozoic formation water in Ordos Basin[J]. Acta Petrolei Sinica, 2010, 31(5): 748-753. 王运所, 许化政, 王传刚, 等. 鄂尔多斯盆地上古生界地层水分布与矿化度特征[J]. 石油学报, 2010, 31(5): 748-753.

[3] SUN Yajun, ZHANG Mengfei, GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society, 2017, 42(1): 56-65. 孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报, 2017, 42(1): 56-65.

[4] QI Xing, XU Qiang, LI Bin, et al. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu[J]. Journal of Engineering Geology, 2016, 24(3): 418-424. 亓星, 许强, 李斌, 等. 甘肃黑方台黄土滑坡地表水入渗机制初步研究[J]. 工程地质学报, 2016, 24(3): 418-424.

[5] ZHOU Tingding. Research mechanism and control measures on corrosion and deterioration of auxiliary shaft lining in Shunhe Coal Mine[D]. Beijing: China University of Mining and Technology(Beijing), 2015. 周廷定. 顺和煤矿副井井壁腐蚀破坏机理与防治措施研究[D]. 北京: 中国矿业大学(北京), 2015.

[6] TIAN Jiangman. Study on anti-corrosion of washery equipment in Henan Yongcheng mining area[D]. Beijing: China University of Mining and Technology(Beijing), 2014. 田江漫. 河南永煤矿区选煤厂设备防腐蚀研究[D]. 北京: 中国矿业大学(北京), 2014.

[7] FAN Limin, MA Xiongde, JIANG Zequan, et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology, 2019, 47(7): 1-30. 范立民, 马雄德, 蒋泽泉, 等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术, 2019, 47(7): 1-30.

[8] GU Dazhao, ZHANG Yong, CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7. 顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, 44(1): 1-7.

[9] GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246.

[10] ZHENG Lin, SUN Yajun, LIU Deyuan, et al. Application research on transfer and storage technology for water resources in diggings of shallow overburden and thin bedrock in mine area[J]. Journal of Henan Polytechnic University(Natural Science), 2010, 29(1): 92-96. 郑琳, 孙亚军, 刘德元, 等. 水资源转移存储在浅埋深薄基岩矿区的应用[J]. 河南理工大学学报(自然科学版), 2010, 29(1): 92-96.

[11] WU Qiang, SHEN Jianjun, WANG Yang. Mining techniques and engineering application for "Coal-Water" dual-resources mine[J]. Journal of China Coal Society, 2017, 42(1): 8-16. 武强, 申建军, 王洋. "煤-水"双资源型矿井开采技术方法与工程应用[J]. 煤炭学报, 2017, 42(1): 8-16.

[12] SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316.

[13] DING Jinyu. The research, exploitation and utilization of mineral water in Xinhe mine[J]. Coal Science & Technology Magazine, 2007(2): 36-37. 丁金余. 新河矿泉水的研究与开发利用[J]. 煤炭科技, 2007(2): 36-37.

[14] LIU Yong, SUN Yajun. The discussion of resourceful technology in mine water[J]. Energy Technology and Management, 2008(1): 73-75. 刘勇, 孙亚军. 煤矿矿井水资源化技术探讨[J]. 能源技术与管理, 2008(1): 73-75.

[15] FENG Bin, GUO Caixiang, HUANG Qingxiao. Generating condition and quality characteristics of Taogou natural mineral water of Xinzhi, Huozhou City[J]. Journal Geology and Mineral Resources North China, 1994, 9(4): 456-460. 冯斌, 郭彩香, 黄青霄. 霍州辛置桃沟矿泉水的形成条件及水质特征[J]. 华北地质矿产杂志, 1994, 9(4): 456-460.

[16] JIA Yuzhou, LI Nanjun. Treatment and resourceful utilization of mine water[J]. Technology and Market, 2018, 25(10): 125-126. 贾玉州, 李南骏. 矿井水处理及其资源化利用[J]. 技术与市场, 2018, 25(10): 125-126.

[17] HUANG Guojun, DONG Shouhua, LI Donghui. Treating methods and comprehensive utilization technique of coal mine water[J]. Express Information of Mining Industry, 2007(4): 44-47. 黄国军, 董守华, 李东会. 矿井水处理方法与综合利用[J]. 矿业快报, 2007(4): 44-47.

[18] YUAN Hang, SHI Hui. Research progress and prospect of coal mine water resource utilization[J]. Journal of Water Resources and Water Engineering, 2008, 19(5): 50-57. 袁航, 石辉. 矿井水资源利用的研究进展与展望[J]. 水资源与水工程学报, 2008, 19(5): 50-57.

[19] LI Qiubo, LUO Shaohe. Disposal and utilization of mine water in Jiaozuo mine area[J]. Energy Environmental Protection, 2007, 21(4): 50-52. 李秋博, 罗绍河. 焦作矿区矿井水处理及其利用[J]. 能源环境保护, 2007, 21(4): 50-52.

[20] ZHONG Mingyuan, QIU Xinlin. Utilization of water resources in Xinji No. 2 mine[J]. Energy Environmental Protection, 2003, 17(1): 59-60. 钟鸣远, 裘鑫林. 新集二矿矿井水资源化利用[J]. 能源环境保护, 2003, 17(1): 59-60.

[21] GUO Changying, LI Duosong, JIANG Jie. Discussion on treatment method of mine high mineralized water[J]. Coal Engineering, 2006, 38(1): 12-13. 郭常颖, 李多松, 江洁. 煤矿高矿化度矿井水处理方法探讨[J]. 煤炭工程, 2006, 38(1): 12-13.

[22] WANG Baoguo, LYU Hongling, YANG Yi. Application of membrane separation technology in petrochemical industry[J]. Petrochemical Technology, 2006, 35(8): 705-710. 王保国, 吕宏凌, 杨毅. 膜分离技术在石油化工领域的应用进展[J]. 石油化工, 2006, 35(8): 705-710.

[23] MAO Weidong. Judgement and prevention of membrane pollution in reverse osmosis treatment of mine drainage[J]. Coal Engineering, 2013, 45(8): 98-100. 毛维东. 矿井水反渗透处理膜污染的判断与预防[J]. 煤炭工程, 2013, 45(8): 98-100.

[24] TOLONEN E T, SARPOLA A, HU Tao, et al. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals[J]. Chemosphere, 2014, 117: 419-424.

[25] ANAWAR H M. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge[J]. Journal of Environmental Management, 2015, 158: 111-121.

[26] USTER B, TRUMM D, POPE J, et al. Waste mussel shells to treat acid mine drainage: A New Zealand initiative[J]. Reclamation Matters, 2014: 23-27.

[27] STROSNIDER W H, NAIRN R W. Effective passive treatment of high-strength acid mine drainage and raw municipal wastewater in Potosí, Bolivia using simple mutual incubations and limestone[J]. Journal of Geochemical Exploration, 2010, 105(1/2): 34-42.

[28] WANG Xuan, CAO Xiaoqiang, LI Lin, et al. Research progress of treatment of acid mine drainage by low-cost adsorbents[J]. Metal Mine, 2018(7): 7-12. 王璇, 曹晓强, 李琳, 等. 低成本吸附剂处理酸性矿井水研究进展[J]. 金属矿山, 2018(7): 7-12.

[29] GUI Herong, YAO Enqin, SONG Xiaomei, et al. Research on recycling technology of coalmine water[J]. Xuzhou: China University of Mining and Technology Press, 2011. 桂和荣, 姚恩亲, 宋晓梅, 等. 矿井水资源化技术研究[M]. 徐州: 中国矿业大学出版社, 2011.

[30] ZHANG Xuezhen. Research situation and prospect of artificial supplement to groundwater[J]. Coal Geology & Exploration, 2006, 34(4): 41-44. 张学真. 地下水人工补给研究现状与前瞻[J]. 煤田地质与勘探, 2006, 34(4): 41-44.

[31] JOHN V H, RICHARD L O. A comparative SEM study on the micromorphology of glacial and nonglacial clasts with varying age and lithology[J]. Canadian Journal of Earth Sciences, 2004, 41(9): 1123-1139.

[32] WANG Meina, LI Jihong, GUO Zhaojie, et al. The influence of water-flooding development on reservoir properties of the NO12 member of Shahejie Formation of Tuo30 fault block in Shengtuo oilfield[J]. Journal of Peking University(Natural Science), 2004, 40(6): 855-863. 王美娜, 李继红, 郭召杰, 等. 注水开发对胜坨油田坨30断块沙二段储层性质的影响[J]. 北京大学学报(自然科学版), 2004, 40(6): 855-863.

[33] MURIEL A, ALAIN B, ANNE M B, et al. A microstructural study of a "crack-seal" type serpentine vein using SEM and TEM techniques[J]. European Journal of Mineralogy, 2004, 16(4): 585-595.

[34] WANG Zongxia, ZENG Lu, WANG Xiaobo, et al. Micromorphology of diatomite under scanning electron microscope[J]. Journal of Electronic Microscopy, 2006, 25(Sup. 1): 345-346. 王宗霞, 曾路, 王小波, 等. 硅藻土在扫描电镜下的微观形貌[J]. 电子显微学报, 2006, 25(增刊1): 345-346.

[35] KLAVER J, DESBOIS G, JANOS L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany[J]. International Journal of Coal Geology, 2012, 103: 12-25.

[36] CELIK K, JACKSON M D, MANCIO M, et al. High-volume natural volcanic Pozzolan and limestone powder as partial replacements for Portland cement in self-compacting and sustainable concrete[J]. Cement and Concrete Composites, 2014, 45(1): 136-147.

[37] GUO Boyun, GHALAMBOR A, DUAN Shengkai. Correlation between sandstone permeability and capillary pressure curves[J]. Journal of Petroleum Science and Engineering, 2004, 43: 239-246.

[38] WANG Ruifei, CHEN Mingqiang, SUN Wei. The research of micro-pore structure in super-low permeability sandstone reservoir of the Yanchang Formation in Ordos Basin[J]. Geological Review, 2008, 54(2): 270-277. 王瑞飞, 陈明强, 孙卫. 鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J]. 地质论评, 2008, 54(2): 270-277.

[39] YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455. 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455.

[40] SCHMITT M, FERNANDES C P, JOSE A B, et al. Characterization of pore systems in seal rocks using Nitrogen Gas Adsorption combined with Mercury Injection Capillary Pressure techniques[J]. Marine and Petroleum Geology, 2013, 39(1): 138-149.

[41] HASAN A N, HOSSAIN M E, HASAN A, et al. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples[J]. Journal of Petroleum Science and Engineering, 2014, 121: 9-22.

[42] WU Qianrong. Phase analysis of clay minerals by X-ray diffraction[J]. Rock and Mineral Analysis, 1994, 13(1): 15-19. 吴乾荣. 粘土矿物的X射线衍射物相分析[J]. 岩矿测试, 1994, 13(1): 15-19.

[43] FENG Tao, WU Guang, ZHANG Xialin. Application of X-ray diffraction analysis technology in granite phase analysis[J]. Railway Engineering, 2008(4): 97-100. 冯涛, 吴光, 张夏临. X射线衍射分析技术在花岗岩物相分析上的应用[J]. 铁道建筑, 2008(4): 97-100.

[44] LIU Qin. Study on the structure and seepage model of Jurassic weak cemented sandstone in Hami mining area[D]. Xuzhou: China University of Mining and Technology, 2018. 刘钦. 哈密矿区侏罗系弱胶结砂岩结构及渗流模型研究[D]. 徐州: 中国矿业大学, 2018.

[45] CHEN Ge. Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos Basin[D]. Xuzhou: China University of Mining and Technology, 2020. 陈歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

[46] ZHU Lili, FANG Yanjun, WU Mei, et al. Changed laws of the water injectivity coefficient in the development course of Lasaxing oilfields[J]. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(1): 70-74. 朱丽莉, 方艳君, 吴梅, 等. 喇萨杏油田开发过程中吸水指数变化规律[J]. 大庆石油地质与开发, 2017, 36(1): 70-74.

[47] WANG Tao, ZHU Weihong, YANG Shenglai, et al. Application of relative permeability curves to establishment of empirical formulas for fluid productivity index and injectivity index of horizontal well[J]. Xinjiang Petroleum Geology, 2009, 30(2): 235-237. 王陶, 朱卫红, 杨胜来, 等. 用相对渗透率曲线建立水平井采液、吸水指数经验公式[J]. 新疆石油地质, 2009, 30(2): 235-237.

[48] DIAO Yujie. Study on the reservoir characterization and CO2 migration underground in the Shenhua CCS demonstration project site[D]. Beijing: China University of Mining & Technology(Beijing), 2017. 刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.