•  
  •  
 

Coal Geology & Exploration

Abstract

In order to overcome the shortcomings of the existing electrical prospecting technology in coal mines, such as multiple construction of electrical sounding, electrical profile and electrical penetration and a scarcity of data collected, an integrated electrical prospecting system is successfully designed, absorbing the idea of parallel electrical data acquisition, and applying the "rectangular wave" electrode layout mode combined with the "multi device data extraction" technology. The experimental results show that the system can complete the original data acquisition of electrical sounding, electrical profile, electrical perspective and other electrical construction methods with one-time wiring and one-round power supply, and extract the measurement data of various electrical methods and device types. After a comprehensive process, the 3D exploration results of various geoelectric fields are obtained. At the same time, results under the same construction conditions are compared with each other to improve the precision and reliability of the analysis of geophysical exploration results. The existing electrical methods such as traditional direct current method, high-density method, parallel method and electric perspective method should be integrated to complement each other in an innovative manner, so as to realize efficient, fine and three-dimensional detection of water bearing capacity of coal and rock strata in the working face.

Keywords

electrical method, integrated exploration, rectangular wave pattern, efficient acquisition, data extraction, 3D exploration

DOI

10.3969/j.issn.1001-1986.2021.05.027

Reference

[1] LIU Shengdong, LIU Jing, YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society, 2014, 39(1): 19-25. 刘盛东, 刘静, 岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报, 2014, 39(1): 19-25.

[2] HU Weiyue, TIAN Gan. Mine water disaster type and prevention and control countermeasures in China[J]. Coal Science and Technology, 2010, 38(1): 92-96. 虎维岳, 田干. 我国煤矿水害类型及其防治对策[J]. 煤炭科学技术, 2010, 38(1): 92-96.

[3] XUE Guoqiang, YU Jingcun. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017, 32(1): 319-326. 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1): 319-326.

[4] ZHANG Hong, XIA Yujing, ZHANG Qun, et al. Coal-mining geological conditions and explorations of deep coal deposits: Status and problems[J]. Coal Geology & Exploration, 2009, 37(1): 1-11. 张泓, 夏宇靖, 张群, 等. 深层煤矿床开采地质条件及综合探测: 现状与问题[J]. 煤田地质与勘探, 2009, 37(1): 1-11.

[5] DONG Shuning. New technology and new equipment of geological guarantee of safe and efficient production in coal mines[J]. China Coal, 2020, 46(9): 15-23. 董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭, 2020, 46(9): 15-23.

[6] ZHOU Jin, CHENG Jiulong, WEN Laifu. Response characteristics of metallic facilities and correction method on mine transient electromagnetic surveying[J]. China Mining Magazine, 2017, 26(8): 146-149. 周金, 程久龙, 温来福. 矿井瞬变电磁金属干扰响应特征与校正方法[J]. 中国矿业, 2017, 26(8): 146-149.

[7] WANG Shaofei. Analysis on application status and development prospect of mine geophysical exploration technology[J]. Jiangxi Chemical Industry, 2020(2): 307-308. 王少飞. 矿井物探技术应用现状与发展展望分析[J]. 江西化工, 2020(2): 307-308.

[8] LIU Shengdong, LIU Jing, QI Jun, et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society, 2019, 44(8): 2336-2345. 刘盛东, 刘静, 戚俊, 等. 矿井并行电法技术体系与新进展[J]. 煤炭学报, 2019, 44(8): 2336-2345.

[9] LIU Shengdong, WU Rongxin, ZHANG Pingsong, et al. Three-dimensional parallel electric surveying and its applications in water disaster exploration in coal mines[J]. Journal of China Coal Society, 2009, 34(7): 927-932. 刘盛东, 吴荣新, 张平松, 等. 三维并行电法勘探技术与矿井水害探查[J]. 煤炭学报, 2009, 34(7): 927-932.

[10] HU Shuigen, LIU Shengdong. A comparative study on efficiency about traditional electrical and collateral data collection in electrical prospecting[J]. Progress in Geophysics, 2010, 25(2): 612-617. 胡水根, 刘盛东. 电法勘探中并行数据采集与传统数据采集效率的比较研究[J]. 地球物理学进展, 2010, 25(2): 612-617.

[11] YUE Jianhua, LIU Shucai. Mine direct current exploration[M]. Beijing: China University of Mining and Technology Press, 2000. 岳建华, 刘树才. 矿井直流电法勘探[M]. 北京: 中国矿业大学出版社, 2000.

[12] DAI Qianwei, CHEN Depeng, CHEN Yongxiong, et al. The enhanced algorithms and its implementation for the abnormal response characteristics in electrical exploration[J]. Coal Geology & Exploration, 2013, 41(3): 75-78. 戴前伟, 陈德鹏, 陈勇雄, 等. 电法勘探中异常响应特征的增强算法及其实现[J]. 煤田地质与勘探, 2013, 41(3): 75-78.

[13] YANG Zhenwei, YAN Jiayong, LIU Yan, et al. Research progress of the high density resistivity method[J]. Geology and Exploration, 2012, 48(5): 969-978. 杨振威, 严加永, 刘彦, 等. 高密度电阻率法研究进展[J]. 地质与勘探, 2012, 48(5): 969-978.

[14] GUO Pengfei, XIE Xionggang, BAI Wen, et al. Application of audio frequency electric perspective method in detecting in detecting mine flooding zones[J]. Industrial Safety and Environmental Protection, 2018, 44(4): 34-36. 郭鹏飞, 谢雄刚, 白雯, 等. 音频电透视法在防治矿井水患中的应用[J]. 工业安全与环保, 2018, 44(4): 34-36.

[15] GUO Chun, LI Wenjun, XING Wenping. Research of the application of the D. C. detecting technology in mine water prevention and cure[J]. Journal of Henan Polytechnic University, 2005, 24(6): 439-442. 郭纯, 李文军, 邢文平. 直流电法探测技术在煤矿防治水方面应用的研究[J]. 河南理工大学学报, 2005, 24(6): 439-442.

[16] XIA Yimin, YIN Qifeng, ZHENG Liugen, et al. Research and application of mine electrical disaster detection technology based on parallel electric method[J]. Calculation Technology Geophysical and Geochemical Exploration, 2019, 41(6): 813-818. 夏毅民, 尹奇峰, 郑刘根, 等. 并行电法矿井水害探测技术研究与应用[J]. 物探化探计算技术, 2019, 41(6): 813-818.

[17] ZHANG Jun, WANG Yong, QIN Honggang, et al. The application of audio frequency electric perspective to detection of coal mine work face[J]. Chinese Journal of Engineering Geophysics, 2013, 10(4): 551-554. 张军, 王勇, 秦鸿刚, 等. 矿井音频电透视在矿井工作面探测中的应用[J]. 工程地球物理学报, 2013, 10(4): 551-554.

[18] YAN Jiayong, MENG Guixiang, LYU Qingtian, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576-584. 严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4): 576-584.

[19] FU Liangkui. Electrical exploration course[M]. Beijing: Geological Publishing House, 1983. 傅良魁. 电法勘探教程[M]. 北京: 地质出版社, 1983.

[20] LI Zhidan. Electrical prospecting in coalfield[M]. Xuzhou: China University of Mining and Technology Press, 1990. 李志聃. 煤田电法勘探[M]. 徐州: 中国矿业大学出版社, 1990.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.