•  
  •  
 

Coal Geology & Exploration

Authors

SUN Yajun, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China; National Professional Center Laboratory of Basic Research on Mine Water Disaster Prevention and Control Technology, Xuzhou 221116, China
XU Zhimin, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China; National Professional Center Laboratory of Basic Research on Mine Water Disaster Prevention and Control Technology, Xuzhou 221116, China
LI Xin, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
ZHANG Li, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
CHEN Ge, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
ZHAO Xianming, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
GAO Yating, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
LIU Qi, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
ZHANG Shangguo, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
WANG Weijun, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
ZHU Lulu, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
WANG Sheng, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Mining activities are bound to produce enormous mine water drainage. Mine water in China shows relatively poor water quality and high cost of water treatment and other problems. Firstly, the main characteristics of mine water quality in China's typical mine areas are clarified in this paper: conventional ions are the main chemical components causing poor mine water quality; mine water has a small proportion of toxic and harmful substances, which is generally better than the quality standard of class Ⅲ groundwater. Secondly, some scientific issues on the formation and evolution of mine water quality are discussed in detail, including the leading role of physical-chemical effects under different hydrogeological structures, the influence of time effect on water quality evolution, the relationship between microbial community structure characteristics and environmental factors, the multi-field coupling of hydrodynamic field, chemical field, microbial field and temperature field. Then, this paper mainly introduces the prevention and control techniques of mine water pollution where on the premise of reducing the amount of water inrush and the protection of water resources, with the goal of realizing the coordinated mining of coal and water resources and the green mining, and the main ideas of "block, reduction and protection" for prevention and control of mine water, scientific issues such as mine water blocking technology, pollution substances reduction technology and pollution area restoration and treatment are analyzed. The cost of coal mine water treatment can be minimized through various existing technologies, methods and processes, such as underground pretreatment, surface in-depth treatment, super deep recharge and storage, ecological resources utilization. Finally, the paper puts forward the development of blocking materials, adsorption materials, grouting equipment, monitoring equipment, feeding equipment, in-situ sampling and detection equipment for groundwater and pollutants in coal mine areas, forming the technical system of mine water pollution prevention and control in coal mine areas. The construction of this technical system provides theoretical and technical support for green mining, the prevention and control of deep groundwater pollution in coal mine areas, the prevention and control of water pollution in closed mines, the protection and utilization of groundwater resources and ecological environment in mine areas.

Keywords

coal mine areas, mine water, pollution prevention and control, block, reduction, protection

DOI

10.3969/j.issn.1001-1986.2021.05.001

Reference

[1] SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316.

[2] WOLKERSDORFER C. Hydrogeochemistry of mine water[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 9-36.

[3] BANKS D, YOUNGER P L, ARNESEN R T, et al. Mine-water chemistry: The good, the bad and the ugly[J]. Environmental Geology, 1997, 32(3): 157-174.

[4] YANG Jian. Research on hydrogeochemical characteristics in Hulusu coal mine of Hujierte coal field[J]. Safety in Coal Mines, 2016, 47(12): 203-206. 杨建. 呼吉尔特矿区葫芦素煤矿水文地球化学特征研究[J]. 煤矿安全, 2016, 47(12): 203-206.

[5] LI Ting. Study on groundwater pollution risk assessment of abandoned coal mine[D]. Xuzhou: China University of Mining and Technology, 2014. 李庭. 废弃矿井地下水污染风险评价研究[D]. 徐州: 中国矿业大学, 2014.

[6] CHEN Ge. Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos Basin[D]. Xuzhou: China University of Mining and Technology, 2020. 陈歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

[7] ZHENG Jieming. Study on genesis mechanism of strong alkali water quality in Muduchaideng minefield[D]. Xuzhou: China University of Mining and Technology, 2020. 郑洁铭. 母杜柴登井田强碱性水质成因机制研究[D]. 徐州: 中国矿业大学, 2020.

[8] HAO Chunming, ZHANG Wei, HE Ruimin, et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining district[J]. Journal of China Coal Society, 2021, 46(6): 1966-1977. 郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报, 2021, 46(6): 1966-1977.

[9] SHAN Yao, QIN Yong, WANG Wenfeng. Chromium leaching mechanism of coal mine water: A modeling study based on Xuzhou-Datun coal mine district[J]. Mining Science and Technology, 2010, 20(1): 97-102.

[10] DONG Donglin, LI Hongjiang, ZHANG Jie, et al. Removal of heavy metals from mine water by cyanobacterial calcification[J]. Mining Science and Technology(China), 2010, 20(4): 566-570.

[11] ZHANG Lei, XU Guangquan, LIU Zegong, et al. Water quality characteristics and formation mechanism of limestone water in coal seam floor of Group A[J]. Coal Engineering, 2010, 42(4): 60-63. 张磊, 许光泉, 刘泽功, 等. A组煤层底板灰岩水水质特征及其形成机理[J]. 煤炭工程, 2010, 42(4): 60-63.

[12] LI Lintao, JIANG Yongmeng, GUO Yiding. The research of a comprehensive industrialization technology on the treatment of mining water containing much more sulphate anion[J]. Coal Geology & Exploration, 1999, 27(6): 51-53. 李林涛, 江永蒙, 郭毅定. 高硫酸盐矿井水综合处理产业化技术研究[J]. 煤田地质与勘探, 1999, 27(6): 51-53.

[13] LI Wensheng, SUN Hongfu. Variation characteristics and cause of mine water quality in Malan coal mine[J]. Coal Geology & Exploration, 2013, 41(4): 46-49. 李文生, 孙红福. 马兰煤矿矿井水水质变化特征及成因[J]. 煤田地质与勘探, 2013, 41(4): 46-49.

[14] LI Xilin, WANG Laigui, LIU Hao. Mine water resource evaluation: With Fuxin mining area as an example[J]. Coal Geology & Exploration, 2012, 40(2): 49-54. 李喜林, 王来贵, 刘浩. 矿井水资源评价: 以阜新矿区为例[J]. 煤田地质与勘探, 2012, 40(2): 49-54.

[15] LIU Jiangjiang. Main environment contradictions occurred in development of Shenyang coal mining area and solution[J]. Coal Engineering, 2014, 46(4): 23-25. 刘江江. 沈阳矿区开发引起的主要环境矛盾和解决办法[J]. 煤炭工程, 2014, 46(4): 23-25.

[16] FENG Bin. Mechanism investigation and numerical modeling study on environmental groundwater changes in Yongcheng mining area, China[D]. Beijing: China University of Geosciences(Beijing), 2019. 冯斌. 永城矿区地下水环境变化机理及其数值模拟研究[D]. 北京: 中国地质大学(北京), 2019.

[17] ZHANG Chenghang, ZHENG Jieming, XU Zhimin, et al. Hydrodynamic conditions analysis of Taiyuan Formation limestone aquifer in Shunhe coal mine based on hydrochemical characteristics[J]. Coal Engineering, 2020, 52(6): 126-129. 张成行, 郑洁铭, 徐智敏, 等. 基于水化学特征的顺和煤矿太灰水动力条件分析[J]. 煤炭工程, 2020, 52(6): 126-129.

[18] GE Guangrong, WU Yiping, ZHANG Quan. Research on technology and process for moderate desalination of high-salinity mine water by nanofiltration[J]. Coal Science and Technology, 2021, 49(3): 208-214. 葛光荣, 吴一平, 张全. 高矿化度矿井水纳滤膜适度脱盐技术研究[J]. 煤炭科学技术, 2021, 49(3): 208-214.

[19] FANG Manyi, LI Xueyan, ZHANG Gen, et al. Discussion on water-rock interaction mechanism in underground reservoir of Daliuta coal mine[J/OL]. Coal Science and Technology, 2021: 1-8[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200502.0813.002.html 房满义, 李雪妍, 张根, 等. 大柳塔煤矿地下水库水岩作用机理分析[J/OL]. 煤炭科学技术, 2021: 1-8[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200502.0813.002.html

[20] ZENG Jianping. Hydrogeological analysis and flood prevention of Honger well field in Hongdunzi mining area, Ningxia[J]. Mining Safety and Environmental Protection, 2012, 39(5): 60-62. 曾建平. 宁夏红墩子矿区红二井田水文地质分析及水害预防[J]. 矿业安全与环保, 2012, 39(5): 60-62.

[21] GUO Yangnan, YANG Junzhe, ZHANG Zheng, et al. Hydrogen and oxygen isotope characteristics of mine water in the Shendong mine area and water-rock reactions mechanism of the formation of high-fluoride mine water[J/OL]. Journal of China Coal Society, 2021: 1-15[2021-08-30]. https://doi.org/10.13225/j.cnki.jccs.2021.0388 郭洋楠, 杨俊哲, 张政, 等. 神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水-岩作用机制[J/OL]. 煤炭学报, 2021: 1-15[2021-08-30]. https://doi.org/10.13225/j.cnki.jccs.2021.0388

[22] ZHOU Junli, WANG Yuchao. Study on water quality in Shendong mining area affected to stability of emulsion[J]. Coal Science and Technology, 2017, 45(7): 118-122. 周俊丽, 王玉超. 神东矿区水质对乳化液稳定性影响的研究[J]. 煤炭科学技术, 2017, 45(7): 118-122.

[23] XIAO Jie. Microbial community distribution and biodegradation characteristics of phenanthrene in closed mine water[D]. Xuzhou: China University of Mining and Technology, 2016. 肖洁. 闭矿条件下矿井水中微生物群落分布及菲的生物降解特性[D]. 徐州: 中国矿业大学, 2016.

[24] HAO Chunming, HUANG Yue, HUANG Ling, et al. Distribution characteristics and source analysis of polycyclic aromatic hydrocarbons phenantrene in abandoned coal mine water[J]. Coal Science and Technology, 2018, 46(9): 99-103. 郝春明, 黄越, 黄玲, 等. 废弃煤矿矿井水中多环芳烃菲分布特征和来源解析[J]. 煤炭科学技术, 2018, 46(9): 99-103.

[25] GAO Bo. Study on occurrence and biodegradation mechanism of PAHs in closed coal mine[D]. Xuzhou: China University of Mining and Technology, 2019. 高波. 关闭煤矿多环芳烃的赋存特征及生物降解机理研究[D]. 徐州: 中国矿业大学, 2019.

[26] SHAN Yao. Water-rock interaction in coal-bearing strata and environmental effect of coal mine water[D]. Xuzhou: China University of Mining and Technology, 2009. 单耀. 含煤地层水岩作用与矿井水环境效应[D]. 徐州: 中国矿业大学, 2009.

[27] WU Kunyu, XIONG Ying, TAN Xiucheng, et al. Study of the crystallization kinetics for"water-rock"interactions in the reservoir pore-system: An overview[J/OL]. Acta Sedimentologica Sinica, 2021: 1-19[2021-08-30]. https://doi.org/10.14027/j.issn.1000-0550.2021.029 伍坤宇, 熊鹰, 谭秀成, 等. 储层孔隙系统"水-岩"反应结晶动力学研究进展[J/OL]. 沉积学报, 2021: 1-19[2021-08-30]. https://doi.org/10.14027/j.issn.1000-0550.2021.029

[28] GUO Yan, GUI Herong, WEI Jiuchuan, et al. Mechanism of water rock interaction in coal measure sandstone aquifer disturbed by grouting engineering: A case study of Taoyuan Coal Mine[J]. Coal Geology & Exploration, 2021, 49(1): 232-240. 郭艳, 桂和荣, 魏久传, 等. 注浆工程扰动下煤系砂岩含水层水岩作用机理: 以桃园煤矿为例[J]. 煤田地质与勘探, 2021, 49(1): 232-240.

[29] SHAN Aiqin, ZHANG Yanting, XIAO Jie, et al. Experimental study of microbial community succession characteristics in abandoned mine groundwater[J]. Environmental Science & Technology, 2019, 42(4): 31-37. 单爱琴, 张燕婷, 肖洁, 等. 废弃矿井微生物群落演替特征实验研究[J]. 环境科学与技术, 2019, 42(4): 31-37.

[30] SHENG Yizhi, WANG Guangcai, LIU Ying, et al. Behavior and fate of Fe in the active bioremediation of acidic coal mine drainage[J]. Earth Science Frontiers, 2018, 25(4): 299-306. 盛益之, 王广才, 刘莹, 等. 煤矿酸性矿井水主动式生物修复中铁的行为与归宿[J]. 地学前缘, 2018, 25(4): 299-306.

[31] XIE Yuxuan. Bioremediation of perchlorate and mixed contamination of perchlorate, nitrate-nitrogen and ammonia-nitrogen[D]. Beijing: China University of Geosciences(Beijing), 2014. 谢宇轩. 高氯酸盐及其与硝酸盐氮、氨氮混合污染的微生物降解研究[D]. 北京: 中国地质大学(北京), 2014.

[32] LI Zhijian, WEI Li, NI Heng. Research advances and case study on passivation and clogging in permeable reactive barrier[J/OL]. Environmental Engineering, 2021: 1-11[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2097.X.20210621.1023.004.html 李志建, 魏丽, 倪恒. 零价铁可渗透反应屏障钝化和堵塞研究进展及案例分析[J/OL]. 环境工程, 2021: 1-11[2021-08-30]. http://kns.cnki.net/kcms/detail/11.2097.X.20210621.1023.004.html

[33] QI Baochuan, HAN Zhiyong, CHEN Jixiang. The research progress of PRB reaction medium for remediation of heavy metal contaminated groundwater[J]. Applied Chemical Industry, 2017, 46(4): 749-754. 祁宝川, 韩志勇, 陈吉祥. PRB修复重金属污染地下水的反应介质研究进展[J]. 应用化工, 2017, 46(4): 749-754.

[34] LIU Qin. Study on the structure and seepage model of Jurassic weak cemented sandstone in Hami mining area[D]. Xuzhou: China University of Mining and Technology, 2018. 刘钦. 哈密矿区侏罗系弱胶结砂岩结构及渗流模型研究[D]. 徐州: 中国矿业大学, 2018.

[35] FENG Zhiqiang, KANG Hongpu. Development and application of new waterproof grouting materials of polyurethane[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 375-380. 冯志强, 康红普. 新型聚氨酯堵水注浆材料的研究及应用[J]. 岩土工程学报, 2010, 32(3): 375-380.

[36] FENG Zhiqiang, KANG Hongpu. Technology research of chemical grouting for cracked coal-rock mass and demonstration project[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(7): 60-65. 冯志强, 康红普. 破碎煤岩体化学注浆堵水技术研究及示范工程[J]. 长江科学院院报, 2009, 26(7): 60-65.

[37] FENG Zhiqiang. Material development and research of osmosis and diffusion on chemical grouting for extraordinary cracked coal and rockmass[D]. Beijing: China Coal Research Institute, 2007. 冯志强. 破碎煤岩体化学注浆加固材料研制及渗透扩散特性研究[D]. 北京: 煤炭科学研究总院, 2007.

[38] YAN Yong, ZHENG Xiuhua. Experimental study on properties of cement-sodium silicate grout[J]. Hydrogeology & Engineering Geology, 2004, 31(1): 71-72. 闫勇, 郑秀华. 水泥-水玻璃浆液性能试验研究[J]. 水文地质工程地质, 2004, 31(1): 71-72.

[39] LIU Yuting. The preparation and properties of security polyurethane grouting material for reinforcement in coal mine[D]. Hefei: Hefei University of Technology, 2013. 刘玉亭. 煤矿用高安全性聚氨酯注浆加固材料的制备及其性能研究[D]. 合肥: 合肥工业大学, 2013.

[40] ZHANG Zhigeng, ZHANG Yafeng, KUANG Jianzheng, et al. Preparation of epoxy acrylate grouting material modified by polyurethane[J]. New Building Material, 2006(4): 56-59. 张志耕, 张亚峰, 邝健政, 等. 聚氨酯改性环氧丙烯酸酯灌浆材料的制备[J]. 新型建筑材料, 2006(4): 56-59.

[41] WANG Zhengsheng, SONG Xuefei, LYU Huawen. Experimental study and application of acrylate grouting material[J]. Coal Engineering, 2013, 45(Sup. 1): 140-142. 王正胜, 宋雪飞, 吕华文. 丙烯酸盐注浆材料实验研究及其应用[J]. 煤炭工程, 2013, 45(增刊1): 140-142.

[42] WANG Jie, SUN Haifeng, DU Jiahong. The study on grouting agent of Lignin without chrome salt[J]. Journal of Shenyang Jianzhu University(Natural Science), 2006, 22(6): 895-898. 王杰, 孙海峰, 杜嘉鸿. 无铬盐木素类注浆材料的试验研究[J]. 沈阳建筑大学学报(自然科学版), 2006, 22(6): 895-898.

[43] ZHANG Chengman, YIN Yongfa, WANG Kaikang. Status and selection of grouting equipment for surrounding rock of tunnel in China[J]. Railway Construction Technology, 1997(5): 23-27. 张成满, 殷永法, 王慨慷. 国内隧道围岩注浆设备的现状及选型[J]. 铁道建筑技术, 1997(5): 23-27.

[44] WANG Chuanyong, WANG Pei, LI Xiangyang. Application of new grouting equipment in geological control water advanced exploration construction[J]. Modern Mining, 2015(12): 243-244. 王传永, 汪佩, 李向阳. 新型注浆设备在地质防治水超前探施工中的应用[J]. 现代矿业, 2015(12): 243-244.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.