•  
  •  
 

Coal Geology & Exploration

Abstract

The mechanical state of overburden after mining is directly related to roof accidents and roof water disasters, so it is necessary to study the overburden structure after mining. The "New Four Zones" model of overburden structure is proposed: caving zone, fracture zone, bedrock separation zone and loose alluvium zone. Combined with the previous "Three Zones" model and "Four Zones" model, this paper makes a spatial comparative analysis to clarify the spatial relationship of the three zoning models. It discusses the scientific nature of the "New Four Zones" model in terms of the influence of mining on water level of the aquifer in the overlying strata, optical fiber detection, roof water drenching, etc., and comes to the conclusion that any interval in the overlying bedrock of the coal seam may produce separation fissures(called separation spaces when reaching a certain macro scale). The "Three Zones" model is mainly used to check the rated working resistance of coal mining supports and to guide the design of water proof coal(rock) pillars. The "Four zones" model can guide the grouting engineering practice in the separated zone to a certain extent, but it has disadvantages of the safety risk of underground grouting and weakening the original engineering value of the "Three Zones" model. The "New Four Zones" model builds on the engineering significance of the "Three Zones" model, and can effectively guide the prevention and control of roof separation water disaster.

Keywords

overburden after mining, "Three Zones" model, "Four Zones" model, "New Four Zones" model, engineering significance, prevention and control of separated layer water disaster

DOI

10.3969/j.issn.1001-1986.2021.05.016

Reference

[1] WANG Shuangmei. A brief review of the methods determining the height of permeable fracture zone[J]. Hydrogeology & Engineering Geology, 2006(5): 126–128. 王双美. 导水裂隙带高度研究方法概述[J]. 水文地质工程地质, 2006(5): 126–128.

[2] QIAN Minggao, MIU Xiexing, XU Jialin, et al. Dominant stratum theory for control of strata movement[M]. Xuzhou: China University of Mining and Technology Press, 2003. 钱鸣高, 缪协兴, 许家林, 等. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.

[3] KANG Yonghua. The effect of various mining methods on development law of water flowing fractured zone[J]. Journal of China Coal Society, 1998, 23(3): 262–266. 康永华. 采煤方法变革对导水裂缝带发育规律的影响[J]. 煤炭学报, 1998, 23(3): 262–266.

[4] ZHU Qingwei, LI Hang, YANG Xiaohu, et al. Influence analysis of between subsidence and structure evolution in overburden rock under mining[J]. Journal of China Coal Society, 2019, 44(Sup. 1): 9–17. 朱庆伟, 李航, 杨小虎, 等. 采动覆岩结构演化特征及对地表沉陷的影响分析[J]. 煤炭学报, 2019, 44(增刊1): 9–17.

[5] WANG Xiaozhen, XU Jialin, HAN Hongkai, et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740–3748. 王晓振, 许家林, 韩红凯, 等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报, 2019, 44(12): 3740–3748.

[6] XU Jialin, WANG Xiaozhen, LIU Wentao, et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 380–385. 许家林, 王晓振, 刘文涛, 等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报, 2009, 28(2): 380–385.

[7] QIAN Minggao, MIAO Xiexing, XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996(3): 225–230. 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(3): 225–230.

[8] CHAI Huabin, ZHANG Junpeng, YAN Chao. Prediction of water-flowing height in fractured zone of overburden strata basedon GA-SVR[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 359–365. 柴华彬, 张俊鹏, 严超. 基于GA-SVR的采动覆岩导水裂隙带高度预测[J]. 采矿与安全工程学报, 2018, 35(2): 359–365.

[9] GAO Yanfa. "Four-zone" model of rockmass movement and back analysis of dynamic displacement[J]. Journal of China Coal Society, 1996, 21(1): 51–56. 高延法. 岩移"四带"模型与动态位移反分析[J]. 煤炭学报, 1996, 21(1): 51–56.

[10] GAO Yanfa, DENG Zhiyi, YANG Zhongdong, et al. Theoretical discussion on grouting settlement reduction in overburden separation zone[J]. Mine Pressure and Roof Management, 2001(4): 65–67. 高延法, 邓智毅, 杨忠东, 等. 覆岩离层带注浆减沉的理论探讨[J]. 矿山压力与顶板管理, 2001(4): 65–67.

[11] LYU Yuguang, XIAO Qinghua, CHENG Jiulong. Mechanism and prevention of water-sand inrush in soft rock with weakly abundant water: A case study in Shanghai temple mining area[J]. Journal of China Coal Society, 2019, 44(10): 3154–3163. 吕玉广, 肖庆华, 程久龙. 弱富水软岩水–沙混合型突水机制与防治技术: 以上海庙矿区为例[J]. 煤炭学报, 2019, 44(10): 3154–3163.

[12] LYU Yuguang, ZHAO Renle, PENG Tao, et al. A typical case analysis of water-sand inrush in mining under thick over-burden rock in Jurassic coalfield[J]. Journal of China Coal Society, 2020, 45(11): 3903–3913. 吕玉广, 赵仁乐, 彭涛, 等. 侏罗纪巨厚基岩下采煤突水溃砂典型案例分析[J]. 煤炭学报, 2020, 45(11): 3903–3912.

[13] LYU Yuguang, XIAO Qinghua, HAN Gang. Study on mechanism of high-strength water-inrush with sang cause by weak aquifer in soft rock mining area[J]. Safety in Coal Mines, 2019, 50(1): 38–42. 吕玉广, 肖庆华, 韩港. 软岩矿区顶板弱含水层高强度携沙突水机理研究[J]. 煤矿安全, 2019, 50(1): 38–42.

[14] YANG Qing, QIAO Wei, LE Jian, et al. Analysis on formation condition of water in roof bed separation in fully mechanized face of extra-thick seam and evaluation of its risk[J]. Mining Safety and Environmental Protection, 2014, 41(3): 64–66. 杨庆, 乔伟, 乐建, 等. 巨厚煤层综采工作面顶板离层水形成条件分析及危险性评价[J]. 矿业安全与环保, 2014, 41(3): 64–66.

[15] QIAO Wei, LI Wenping, LI Xiaoqin. Mechanism of ''hydrostatic water-inrush'' and counter measures for water inrush in roof bed separation of a mining face[J]. Journal of Mining and Safety Engineering, 2011, 28(1): 96–104. 乔伟, 李文平, 李小琴. 采场顶板离层水"静水压涌突水"机理及防治[J]. 采矿与安全工程学报, 2011, 28(1): 96–104.

[16] CAO Dingtao. Hydrostatic water-inrush in bed separation and its prevention and control[J]. Hydrogeology and Engineering Geology, 2013, 40(2): 9–12. 曹丁涛. 离层静水压突水及其防治[J]. 水文地质工程地质, 2013, 40(2): 9–12.

[17] LI Wenping, LI Xiaoqin, SUN Ruhua. Preliminary study on "dynamic water inrush" in coal mining under super-thick hard rock[J]. Journal of Engineering Geology, 2008(Sup. 1): 446–450. 李文平, 李小琴, 孙如华. 巨厚坚硬岩层下煤层开采"动力突水"初步研究[J]. 工程地质学报, 2008(增刊1): 446–450.

[18] PENG Tao, FENG Xihui, LONG Liangliang, et al. Study on mechanism of water inrush and sand inrush in mining of coal seam with thick overlying bedrock[J]. Coal Science and Technology, 2019, 47(7): 260–264. 彭涛, 冯西会, 龙良良, 等. 厚覆基岩下煤层开采突水溃砂机理研究[J]. 煤炭科学技术, 2019, 47(7): 260–264.

[19] LIU Zhaoxing, DONG Shuning, JIN Dewu, et al. Formation mechanism and prevention and control of underground debris flow induced by roof-cutting of pressured support in deep-buried face[J]. Journal of China Coal Society, 2019, 44(11): 3515–3528. 柳昭星, 董书宁, 靳德武, 等. 深埋采场压架切顶诱发井下泥石流形成机理与防控[J]. 煤炭学报, 2019, 44(11): 3515–3528.

[20] QIAN Minggao, SHI Pingwu, XU Jialin. Mine pressure and strata control[M]. Xuzhou: China University of Mining and Technology Press, 2003. 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2003.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.