•  
  •  
 

Coal Geology & Exploration

Authors

QU Tong, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
HUANG Zhilong, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, ChinaFollow
WANG Rui, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
TAN Sizhe, Shanghai Branch, CNOOC(China) Co., Ltd., Shanghai 200335, China
LI Zhiyuan, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
GUO Xiaobo, School of Earth Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
ZHAO Jing, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
PAN Yongshuai, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China

Abstract

Under the control of tectonic activity in the Tethys region, a series of basins with coal measure source rocks developed, and the Tertiary coal in the circum Pacific belt is characterized by "hydrogen-rich" and has great hydrocarbon generation potential.This type of coal measure strata is an important source rock in petroliferous basins along the southeast coast of China.Therefore, it is particularly important to systematically analyze the development characteristics and controlling factors of coal measure source rocks under the Tethys background. Based on the systematic analysis of the development age, environments, geochemical characteristics and biomarker characteristics of the coal measure source rocks in the Tethys region, the controlling factors affecting the development of the coal-measure source rocks are summarized, and the favorable development conditions and controlling factors of high-quality coal-measure source rocks are clarified. The research results show that the coal-measure source rocks under the control of the Tethyan region are mainly developed in the basins under the extensional background of the coastal areas of Southeast Asia, mostly in the marine-terrestrial transitional facies sedimentary environment during the rifting period, and the development age is consistent with the period of Tethys tectonic activity.The development of coal-measures source rocks is controlled by many factors, such as paleovegetation, paleoenvironment, lithofacies paleogeography, terrigenous organic matter supply, tectonic activity intensity, sedimentation rate and so on. The factors are interrelated and influence each other, which can be divided into three types: parent source factor, tectonic-sedimentation factor and preservation factor.The plant types rich in the chitinous and hydrogen-rich vitrinites are the necessary parent source conditions for the formation of hydrogen-rich coal. The favorable coal accumulation environment and stable tectonic background are the key factors for the large-scale development of coal measure source rocks. Appropriate water conditions and reduction environment are important factors for the preservation of organic matter. The coal measure source rocks in the southeast coastal basins of China have great hydrocarbon generation potential. The coal measure source rocks are rich in resin in the Xihu Sag of the East China Sea basin, the coal measure source rocks are rich in spores and pollen in the Pearl River Mouth Basin, and the coal measure mudstone is widely developed in Qiongdongnan Basin, which has great exploration prospect.

Keywords

Tethys region, coal-measure source rock, distribution characteristics, development characteristics, controlling factors

DOI

10.3969/j.issn.1001-1986.2021.05.013

Reference

[1] CHEN Zhiliang. One hundred years of Tethys geology[J]. Tethyan geology, 1994, 18: 1–22. 陈智梁. 特提斯地质一百年[J]. 特提斯地质, 1994, 18: 1–22.

[2] PAN Guitang. The evolution of Tethys in the global ocean continent transition[J]. Tethyan geology, 1994, 18: 23–40. 潘桂棠. 全球洋-陆转换中的特提斯演化[J]. 特提斯地质, 1994, 18: 23–40.

[3] MEULENKAMP J E, SISSINGH W. Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 196(1/2): 209–228.

[4] WANG Zhongwei, WANG Jian, FU Xiugen, et al. Sedimentary successions and onset of the Mesozoic Qiangtang rift basin(Northern Tibet), Southwest China: Insights on the Paleo- and Meso-Tethys evolution[J]. Marine and Petroleum Geology, 2019, 102: 657–679.

[5] BORRUEL-ABADíA V, LóPEZ-GóMEZ J, DE LA HORRA R, et al. Climate changes during the Early-Middle Triassic transition in the E. Iberian plate and their palaeogeographic significance in the western Tethys continental domain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 671–689.

[6] GAN Kewen. Evolution and hydrocarbon distribution of Tethys domain[J]. Marine Origin Petroleum Geology, 2000, 5(3/4): 21–29. 甘克文. 特提斯域的演化和油气分布[J]. 海相油气地质, 2000, 5(3/4): 21–29.

[7] QIU Dongzhou, XIE Yuan, LI Xiaoqing, et al. Geological characteristics of lithofacies paleogeography and hydrocarbon accumulation in Asian Tethyan tectonic domain[J]. Marine Origin Petroleum Geology, 2009, 14(2): 41–51. 丘东洲, 谢渊, 李晓清, 等. 亚洲特提斯域岩相古地理与油气聚集地质特征[J]. 海相油气地质, 2009, 14(2): 41–51.

[8] WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethys geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627–1674. 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627–1674.

[9] QIU Dongzhou. Geological characteristics of the hydrocarbon accumulation in the Tethyan tectonic domain[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(2): 1–8. 丘东洲. 亚洲特提斯域油气聚集地质特征[J]. 沉积与特提斯地质, 2007, 27(2): 1–8.

[10] KLEMME H D, ULMISHEK G F. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors[J]. The American Association of Petroleum Geologists Bulletion, 1991, 75(12): 1809–1851.

[11] YE Hefei, LUO Jianning, LI Yongtie, et al. Tethyan tectonic domain and petroleum exploration[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(1): 1–27. 叶和飞, 罗建宁, 李永铁, 等. 特提斯构造域与油气勘探[J]. 沉积与特提斯地质, 2000, 20(1): 1–27.

[12] LI Sitian, LU Fengxiang, LIN Changsong, et al. Mesozoic Cenozoic basin evolution and geodynamic background in eastern China and its adjacent areas[M]. Wuhan: China University of Geosciences Press, 1997. 李思田, 路凤香, 林畅松, 等. 中国东部及其邻区中、新生代盆地演化及地球动力学背景[M]. 武汉: 中国地质大学出版社, 1997.

[13] LI Sanzhong, ZHAO Shujuan, LIU Xin, et al. Closure of the Proto-Tethys ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth Science Reviews, 2018, 186: 37–75.

[14] HE Pengfei, CAO Hua. Evolution characteristics of Tethys ocean and its control on hydrocarbon accumulation in North Africa[J]. Inner Mongolia Petrochemical Industry, 2018, 1(5): 120–124. 赫鹏飞, 曹华. 北非地区特提斯洋演化特征及对油气成藏的控制[J]. 内蒙古石油化工, 2018, 1(5): 120–124.

[15] HE Pengfei, ZHOU Hanghui. Petroleum geology characteristics and exploration prospect in the North Africa Tethyan tectonic domain[J]. Petrochemical Industry Application, 2018, 37(8): 73–77. 赫鹏飞, 周航辉. 北非特提斯域油气地质特征及勘探方向[J]. 石油化工应用, 2018, 37(8): 73–77.

[16] YANG Ting, KANG Hongquan, LIU Dongxu, et al. The sedimentary facies evolution and the development characteristics of source rocks' in North Carnarvon Basin, Australia[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(5): 81–91. 杨婷, 康洪全, 刘东旭, 等. 北卡那封盆地沉积演化规律与烃源岩发育特征[J]. 西南石油大学学报(自然科学版), 2017, 39(5): 81–91.

[17] LIU Zhifeng, YANG Dongsheng, WANG Shenglan, et al. Sequence of rifting in three episodes of offshore basins in China and its significance for oil and gas exploration[J]. Ocean Engineering Equipment and Technology, 2019, 6(Sup. 1): 283–292. 刘志峰, 杨东升, 王升兰, 等. 中国近海盆地三幕裂陷有序性及其油气勘探意义[J]. 海洋工程装备与技术, 2019, 6(增刊1): 283–292.

[18] LI Yang, ZHANG Jinliang, LIU Yang, et al. Organic geochemistry, distribution and hydrocarbon potential of source rocks in the Paleocene, Lishui Sag, East China Sea Shelf Basin[J]. Marine and Petroleum Geology, 2019, 107: 382–396.

[19] WU Piao, HOU Dujie, GAN Jun, et al. Developmental model of Oligocene source rock in the Eastern deep-water area of Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(3): 633–647. 吴飘, 侯读杰, 甘军, 等. 琼东南盆地深水东区渐新统烃源岩发育模式[J]. 沉积学报, 2019, 37(3): 633–647.

[20] ZHOU Baochang. Jurassic coal accumulation rule in Ordos Basin[J]. Geology of Shaanxi, 1983, 1(1): 38–46. 周宝昌. 鄂尔多斯盆地侏罗纪聚煤规律[J]. 陕西地质, 1983, 1(1): 38–46.

[21] TIAN Yang, YE Jiaren, LEI Chuang, et al. Hydrocarbon source rock development model of marine terrestrial transitional facies in fault basin: A case study of Pinghu Formation in Xihu Sag[J]. Editorial Committee of Earth Science, 2019, 44(3): 898–908. 田杨, 叶加仁, 雷闯, 等. 断陷盆地海陆过渡相烃源岩发育模式: 以西湖凹陷平湖组为例[J]. 地球科学, 2019, 44(3): 898–908.

[22] SHEN Wenchao. The coal accumulation model and sedimentary organic facies of Paleogene coal in the Xihu Depression[D]. Beijing: China University of Mining and Technology(Beijing), 2018. 沈文超. 西湖凹陷古近系煤的聚集模式及沉积有机相研究[D]. 北京: 中国矿业大学(北京), 2018.

[23] LIU Yuhu, ZHAO Dandan, LIU Xingwang, et al. The control of the evolution of Turpan Hami Jurassic prototype basin on the distribution of source rocks[J]. Journal of Southwest Petroleum University(Natural Science Edition), 2012, 34(4): 29–39. 刘玉虎, 赵丹丹, 刘兴旺, 等. 吐哈侏罗纪原型盆地演化对烃源岩分布的控制[J]. 西南石油大学学报(自然科学版), 2012, 34(4): 29–39.

[24] REN Jiayu, JIANG Bo, QU Zhenghui, et al. Tectonic evolution and control of coal with contrast of East China Sea and Northern South China Sea[J]. Coal Technology, 2015, 34(5): 99–102. 任佳宇, 姜波, 屈争辉, 等. 东海与南海北部盆地构造演化及其构造控煤特征[J]. 煤炭技术, 2015, 34(5): 99–102.

[25] LI Rongxi. Achievements of the coal source rock research in last ten years[J]. Bulletin of Geological Science and Technology, 2000, 19(4): 55–59. 李荣西. 九十年代煤系烃源岩研究新进展[J]. 地质科技情报, 2000, 19(4): 55–59.

[26] HUANG Difan. Advances in hydrocarbon generation theory: (Ⅱ)Oils from coal and its primary migration model[J]. Advances in Earth Science, 1996, 11(5): 432–438. 黄第藩. 成烃理论的发展: (Ⅱ)煤成油及其初次运移模式[J]. 地球科学进展, 1996, 11(5): 432–438.

[27] LIU Guangdi. Petroleum geology[M]. Beijing: Petroleum Industry Press, 2009. 柳广弟. 石油地质学[M]. 北京: 石油工业出版社, 2009.

[28] SUN Jinshan, LIU Guohong, SUN Ming'an, et al. Source rock evaluation of coal-measures strata in Kuqa Depression of Tarim Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2003, 25(6): 1–4. 孙金山, 刘国宏, 孙明安, 等. 库车坳陷侏罗系煤系烃源岩评价[J]. 西南石油大学学报(自然科学版), 2003, 25(6): 1–4.

[29] ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics[J]. Acta Petrolei Sinica, 2011, 32(3): 369–378. 张功成, 米立军, 屈红军, 等. 全球深水盆地群分布格局与油气特征[J]. 石油学报, 2011, 32(3): 369–378.

[30] QU Hongjun, ZHANG Gongcheng. Distribution framework and main factors controlling hydrocarbon accumulation of global oil and gas-rich deepwater basins[J]. Natural Gas Geoscience, 2017, 28(10): 1478–1487. 屈红军, 张功成. 全球深水富油气盆地分布格局及成藏主控因素[J]. 天然气地球科学, 2017, 28(10): 1478–1487.

[31] LIU Fengming. Petroleum geological characteristics and evaluation of oil and gas resources in Kutai Basin[D]. Beijing: China University of Petroleum(Beijing), 2017: 7–36. 刘凤鸣. 库泰盆地石油地质特征与油气资源评价[D]. 北京: 中国石油大学(北京), 2017: 7–36.

[32] YANG Lei. Petroleum geology and exploration potential analysis in Central Sumatra Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 329–331. 杨磊. 中苏门答腊盆地石油地质特征与油气勘探潜力[J]. 新疆石油地质, 2011, 32(3): 329–331.

[33] LIU Shixiang, ZHAO Zhigang, XIE Xiaojun, et al. Petroleum geology and exploration prospects of Wenlai-Shaba Basin[J]. Science Technology and Engineering, 2018, 18(4): 29–34. 刘世翔, 赵志刚, 谢晓军, 等. 文莱–沙巴盆地油气地质特征及勘探前景[J]. 科学技术与工程, 2018, 18(4): 29–34.

[34] LUO Jinhai, ZHOU Xinyuan, QIU Bin, et al. Petroleum geology and geological evolution of the Tarim-Karakum and Adjacent Areas[J]. Geological Review, 2005, 51(4): 409–415. 罗金海, 周新源, 邱斌, 等. 塔里木–卡拉库姆地区的油气地质特征与区域地质演化[J]. 地质论评, 2005, 51(4): 409–415.

[35] BAI Guoping, YIN Jinyin. Distribution characteristics and accumulation model for oil and gas in Karakum Basin, Central Asia[J]. Journal of Palaeogeography, 2007, 9(3): 293–301. 白国平, 殷进垠. 中亚卡拉库姆盆地油气分布特征与成藏模式[J]. 古地理学报, 2007, 9(3): 293–301.

[36] ZHANG Qiang, ZHANG Guangya, LI Yuejun, et al. Discussion on structural attributes of Late Permian Triassic in Karakum Basin[J]. Chinese Journal of Geology, 2016, 51(1): 157–164. 张强, 张光亚, 李曰俊, 等. 卡拉库姆盆地晚二叠世—三叠纪的构造属性讨论[J]. 地质科学, 2016, 51(1): 157–164.

[37] YIN Jiquan, JIA Chengzao, WANG Chunsheng, et al. Petroleum geological characteristics and exploration direction of Afghanistan Tajik Basin[J]. Marine Origin Petroleum Geology, 2015, 20(4): 43–48. 尹继全, 贾承造, 王春生, 等. 阿富汗–塔吉克盆地油气地质特征及勘探方向[J]. 海相油气地质, 2015, 20(4): 43–48.

[38] LI Jian, JIANG Zhenglong, LUO Xia, et al. Geochemical characteristics of coal-measure source rocks and coal-derived gas in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2009, 36(3): 365–374. 李剑, 姜正龙, 罗霞, 等. 准噶尔盆地煤系烃源岩及煤成气地球化学特征[J]. 石油勘探与开发, 2009, 36(3): 365–374.

[39] ZHAO caishun. Structural characteristics of carboniferous system in the hinterland and periphery of Junggar Basin[D]. Beijing: China University of Geosciences(Beijing), 2010. 赵才顺. 准噶尔盆地腹部及周缘地区石炭系构造特征[D]. 北京: 中国地质大学(北京), 2010.

[40] WU Jincai. Jurassic sequence stratigraphy and subtle trap identification in the hinterland of Junggar Basin[D]. Chengdu: Chengdu University of Technology, 2005. 吴金才. 准噶尔盆地腹部侏罗系层序地层学研究与隐蔽圈闭识别[D]. 成都: 成都理工大学, 2005.

[41] WU kongyou, ZHA Ming, WANG Xulong, et al. Further researches on the tectonic evolution and dynamic setting of the Junggar Basin[J]. Acta Geoscientia Sinica, 2005, 26(3): 217–222. 吴孔友, 查明, 王绪龙, 等. 准噶尔盆地构造演化与动力学背景再认识[J]. 地球学报, 2005, 26(3): 217–222.

[42] GOU Hongguang, ZHANG Pin, SHE Jiachao, et al. Petroleum geological conditions, resource potential and exploration direction in Turpan-Hami Basin[J]. Marine Origin Petroleum Geology, 2019, 24(2): 85–96. 苟红光, 张品, 佘家朝, 等. 吐哈盆地石油地质条件、资源潜力及勘探方向[J]. 海相油气地质, 2019, 24(2): 85–96.

[43] JIA Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 3–9. 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 1999, 20(3): 3–9.

[44] TIAN Guangrong, LI Hongzhe, BAI Yadong, et al. Classification and evaluation of the hydrocarbon generation potential of Jurassic coal measures of Qaidam Basin[J]. Coal Geology & Exploration, 2018, 46(5): 73–80. 田光荣, 李红哲, 白亚东, 等. 柴达木盆地侏罗系煤系烃源岩生烃潜力分类评价[J]. 煤田地质与勘探, 2018, 46(5): 73–80.

[45] FENG Qiao, FU Suotang, ZHANG Xiaoli, et al. Jurassic prototype basin restoration and hydrocarbon exploration prospect in the Qaidam Basin and its adjacent area[J]. Earth & Science Frontiers, 2019, 26(1): 44–58. 冯乔, 付锁堂, 张小莉, 等. 柴达木盆地及邻区侏罗纪原型盆地恢复及油气勘探前景[J]. 地学前缘, 2019, 26(1): 44–58.

[46] BAI Yunlai, WANG Xinmin, LIU Huaqing, et al. Determination of the borderline of the Western Ordos Basin and its geodynamics background[J]. Acta Geologica Sinica, 2006, 80(6): 792–813. 白云来, 王新民, 刘化清, 等. 鄂尔多斯盆地西部边界的确定及其地球动力学背景[J]. 地质学报, 2006, 80(6): 792–813.

[47] LIU Jieqi. Study on natural gas accumulation process of coal measure source rocks: A case study of Shanxi Formation in Eastern Ordos Basin[D]. Xi'an: Xi'an University of Petroleum, 2017. 刘洁琪. 煤系烃源岩天然气成藏过程研究: 以鄂尔多斯盆地东部山西组为例[D]. 西安: 西安石油大学, 2017.

[48] LIANG Min, WANG Hui, LIANG Hui, et al. Coalbed gas and shale gas resource prospect study of Heyang-Hancheng Area[J]. Ground Water, 2018, 40(2): 93–95. 梁敏, 王辉, 梁辉, 等. 鄂尔多斯盆地山西组煤系烃源岩特征研究[J]. 地下水, 2018, 40(2): 93–95.

[49] ZHANG Hong, JIN Xianglan, LI Guihong, et al. Original features and palaeogeographic evolution during the Jurassic-Cretaceous in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(1): 1–11. 张泓, 晋香兰, 李贵红, 等. 鄂尔多斯盆地侏罗纪–白垩纪原始面貌与古地理演化[J]. 古地理学报, 2008, 10(1): 1–11.

[50] LUO Zongqiang, LIU Tieshu, WANG Zhugang. Analysis of oil and gas exploration potential in Bengal Basin, Bangladesh[J]. China Petroleum Exploration, 2012, 17(2): 67–73. 骆宗强, 刘铁树, 袭著纲. 孟加拉国孟加拉盆地油气勘探潜力分析[J]. 中国石油勘探, 2012, 17(2): 67–73.

[51] KE Weili, TONG Xiaoguang. Petroleum geological characteristics and exploration potential of Bengal Basin[J]. Journal of Xi'an Shiyou University(Natural Science), 2013, 28(5): 15–20. 客伟利, 童晓光. 孟加拉盆地油气地质特征与勘探潜力[J]. 西安石油大学学报(自然科学版), 2013, 28(5): 15–20.

[52] LAI Shenghua, MA Jianming, LIAO Lin. The oil-gas exploration potential of Chindwin sag in the central basin in Burma[J]. Natural Gas Industry, 2005, 25(11): 21–24. 赖生华, 麻建明, 廖林. 缅甸中央沉降带Chindwin盆地油气勘探潜力[J]. 天然气工业, 2005, 25(11): 21–24.

[53] YANG Lei. Analysis of hydrocarbon accumulation conditions in Block D of Myanmar[D]. Chengdu: Chengdu University of Technology, 2011. 杨磊. 缅甸D区块油气成藏条件分析[D]. 成都: 成都理工大学, 2011.

[54] LI Yunzhen, LYU Ming, BAI Haiqiang, et al. Sedimentary environments of the volcanic island arc zone in the Chindwin-Shwebo Basin, Myanmar[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(3): 48–55. 李运振, 吕明, 白海强, 等. 缅甸钦敦–睡宝盆地火山岛弧带沉积环境分析[J]. 沉积与特提斯地质, 2013, 33(3): 48–55.

[55] WANG Ying, XIN Renchen. Formation and evolution of petroliferous basins in Myanmar and their geodynamic background[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 27–35. 王营, 辛仁臣. 缅甸含油气盆地群形成演化及其地球动力学背景[J]. 地质科技通报, 2021, 40(1): 27–35.

[56] ZHANG Yunyi. Comparison of petroleum geological characteristics between Pengshiluo Basin and Gulf of Thailand Basin in Thailand[D]. Beijing: China University of Petroleum(Beijing), 2016. 张云逸. 泰国彭世洛盆地与泰国湾盆地油气地质特征对比[D]. 北京: 中国石油大学(北京), 2016: 7–29.

[57] CHANTRAPRASERT S, UTITSAN S. Origin of synchronous extension and inversion in a rift basin: The Phitsanulok Basin, central Thailand[J]. Journal of Asian Earth Sciences, 2021: 104774.

[58] HU Zhongliang. Hydrocarbon generation dynamics and hydrocarbon accumulation of source rocks in Yannan sag, Qiongdongnan Basin[D]. Guangzhou: Graduate School of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry), 2005. 胡忠良. 琼东南盆地崖南凹陷烃源岩生烃动力学和油气成藏研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2005.

[59] KOU Caixiu. A new field for oil exploration in the pre Oligocene of the Pearl River Mouth Basin in the northern South China Sea[J]. Marine Geology Quaternary Geology, 1984, 4(2): 41–47. 寇才修. 南海北部海区珠江口盆地前渐新统找油的新领域[J]. 海洋地质与第四纪地质, 1984, 4(2): 41–47.

[60] LI Yan, DENG Yunhua, LI Youchuan, et al. Development characteristics and favorable facies zones of coal measure source rocks in river delta system of Pearl River Mouth Basin[J]. Journal of Northeast Petroleum University, 2016, 40(1): 62–71. 李燕, 邓运华, 李友川, 等. 珠江口盆地河流—三角洲体系煤系烃源岩发育特征及有利相带[J]. 东北石油大学学报, 2016, 40(1): 62–71.

[61] LI Xiaolong, XU Changhai, GAO Shunli, et al. Late Mesozoic magmatic arc of continental margin: Constraints from detrital zircon U-Pb data, East China Sea[J]. Acta Geologica Sinica, 2020, 94(2): 480–490. 李晓龙, 许长海, 高顺莉, 等. 东海晚中生代岩浆弧与陆缘汇聚作用: 碎屑锆石U-Pb年代约束[J]. 地质学报, 2020, 94(2): 480–490.

[62] JIANG Yiming, DIAO Hui, ZENG Wenqian. Source rock conditions and hydrocarbon generation model of Pinghu Formation in Xihu Sag, Donghai Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 30–39. 蒋一鸣, 刁慧, 曾文倩. 东海盆地西湖凹陷平湖组煤系烃源岩条件及成烃模式[J]. 地质科技通报, 2020, 39(3): 30–39.

[63] RODRIGUEZ N D, PAUL PHILP R. Productivity and paleoclimatic controls on source rock character in the Aman Trough, north central Sumatra, Indonesia[J]. Organic Geochemistry, 2012, 45: 18–28.

[64] HUANG Zhong, HU Xiaolin, GUO Gang, et al. Structural zonation and hydrocarbon accumulation model of the Sumatra back arc rift basin[J]. Marine Geology Frontiers, 2018, 34(8): 61–67. 黄众, 胡孝林, 郭刚, 等. 苏门答腊裂谷盆地带构造分带及其成藏模式[J]. 海洋地质前沿, 2018, 34(8): 61–67.

[65] LUNT P. Partitioned transtensional Cenozoic stratigraphic development of North Sumatra[J]. Marine and Petroleum Geology, 2019, 106: 1–16.

[66] YUAN Hao, ZHANG Tingshan, WANG Haifeng, et al. Characteristics and evaluation of Paleogene source rocks in block m of South Sumatra Basin[J]. Natural Gas Geoscience, 2012, 23(4): 646–653. 袁浩, 张廷山, 王海峰, 等. 南苏门答腊盆地M区块古近系烃源岩特征及评价[J]. 天然气地球科学, 2012, 23(4): 646–653.

[67] ZHAO Xu. Sedimentary sequence and paleotectonic control during rifting in WJ area of South Sumatra Basin[D]. Beijing: China University of Geosciences(Beijing), 2020. 赵旭. 南苏门答腊盆地WJ区裂陷期沉积层序及古构造控制[D]. 北京: 中国地质大学(北京), 2020.

[68] WANG Yongzhen. Petroleum geological conditions and main controlling factors of hydrocarbon accumulation in Malay Basin[D]. Beijing: China University of Geosciences(Beijing), 2011. 王永臻. 马来盆地石油地质条件及成藏主控因素分析[D]. 北京: 中国地质大学(北京), 2011.

[69] QIAO Hansheng, YU Xinghe. Petroleum geology of rift basin[M]. Beijing: Petroleum Industry Press, 2004. 谯汉生, 于兴河. 裂谷盆地石油地质[M]. 北京: 石油工业出版社, 2004.

[70] SUN Guihua, GAO Hongfang, PENG Xuechao, et al. Geological structure and sedimentary characteristics of Mekong Basin in southern Vietnam[J]. Marine Geology Quaternary Geology, 2010, 30(6): 25–33. 孙桂华, 高红芳, 彭学超, 等. 越南南部湄公盆地地质构造与沉积特征[J]. 海洋地质与第四纪地质, 2010, 30(6): 25–33.

[71] QIAN Guanghua, FAN Kaiyi. The geological tectonic and it's evolution in Wan'an Basin[J]. Offshore Oil and Gas(Geology) of China, 1997, 11(2): 1–7. 钱光华, 樊开意. 万安盆地地质构造及演化特征[J]. 中国海上油气(地质), 1997, 11(2): 1–7.

[72] ZHANG Houhe, HE Shuanzhu, LIU Peng, et al. New understanding of oil and gas geological characteristics and resource potential in Wan'an Basin[J]. Petroleum Geology and Experiment, 2017, 39(5): 625–632. 张厚和, 赫栓柱, 刘鹏, 等. 万安盆地油气地质特征及其资源潜力新认识[J]. 石油实验地质, 2017, 39(5): 625–632.

[73] LIU Hai. Petroleum geological characteristics and comparative study of East and West Natuna Basins[D]. Beijing: China University of Geosciences(Beijing), 2012. 刘海. 东、西纳土纳盆地石油地质特征及对比研究[D]. 北京: 中国地质大学(北京), 2012.

[74] NI Shiqi, WANG Zhixin, LIU Fengming, et al. Geological characteristics and distribution pattern of petroleum in West Natuna Basin, Indonesia[J]. Marine Geology Frontiers, 2017, 33(2): 26–34. 倪仕琪, 王志欣, 刘凤鸣, 等. 印度尼西亚西纳土纳盆地油气地质特征与分布规律[J]. 海洋地质前沿, 2017, 33(2): 26–34.

[75] LUNT P. A reappraisal of the Cenozoic stratigraphy of the Malay and West Natuna Basins[J]. Journal of Asian Earth Sciences: X, 2021, 5: 100044.

[76] DOUST H, NOBLE R A. Petroleum systems of Indonesia[J]. Marine and Petroleum Geology, 2008, 25: 103–129.

[77] ZHANG Houhe, HE Shuanzhu, LIU Peng, et al. Evaluation of source rocks and oil-source correlation of Zengmu Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 466–475. 张厚和, 赫栓柱, 刘鹏, 等. 曾母盆地烃源岩评价及油源探讨[J]. 矿物岩石地球化学通报, 2017, 36(3): 466–475.

[78] GUO Zhifeng, HU Xiaolin, GUO Gang, et al. Hydrocarbon accumulation characteristics and main controlling factors in Dalagan Basin, Indonesia[J]. Marine Origin Petroleum Geology, 2018, 23(2): 83–89. 郭志峰, 胡孝林, 郭刚, 等. 印尼打拉根盆地油气成藏特征与主控因素[J]. 海相油气地质, 2018, 23(2): 83–89.

[79] SATYANA A H, NUGROHO D, SURANTOKO I. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: Major dissimilarities in adjoining basins[J]. Journal of Asian Earth Sciences, 1999, 17(1-2): 99–122.

[80] ZHANG Qiang, LYU Fuliang, MAO Chaolin, et al. Petroleum geology and exploration prospect in Kutai Basin, Indonesia[J]. Marine Origin Petroleum Geology, 2012, 17(4): 8–15. 张强, 吕福亮, 毛超林, 等. 印度尼西亚库泰盆地油气地质特征及勘探方向[J]. 海相油气地质, 2012, 17(4): 8–15.

[81] CHEN Rong, HE Jingbo. Distribution of organic shale and shale gas resource potential in Indonesia[J]. China Mining Magazine, 2018, 27(S1): 164–168. 陈榕, 贺敬博. 印度尼西亚富有机质页岩分布情况与页岩气资源潜力[J]. 中国矿业, 2018, 27(S1): 164–168.

[82] YANG Fuzhong, LUO Liang, JIA Dong, et al. Cenozoic Tectonic Evolution of the East Java Basin, Indonesia[J]. Geological Journal of China Universities, 2011, 17(2): 240–248. 杨福忠, 罗良, 贾东, 等. 印尼东爪哇盆地新生代构造演化[J]. 高校地质学报, 2011, 17(2): 240–248.

[83] XI Zhugang, HU Xiaolin, FANG Yong, et al. Tectonic evolution of North Seram Basin, Indonesia, and its control over hydrocarbon accumulation conditions[J]. China Petroleum Exploration, 2016, 21(6): 91–97. 袭著纲, 胡孝林, 方勇, 等. 印度尼西亚北塞兰盆地构造演化及其对油气成藏条件的控制[J]. 中国石油勘探, 2016, 21(6): 91–97.

[84] LI Dan, YANG Xianghua, CHANG Yinshan, et al. Distribution characteristics of terrigenous organic matter in the middle upper Triassic Mungaroo delta of North Carnarvon basin, Australia[J]. Journal of Palaeogeography, 2014, 16(2): 193–204. 李丹, 杨香华, 常吟善, 等. 澳大利亚北卡那封盆地中上三叠统Mungaroo三角洲陆源有机质分布特征[J]. 古地理学报, 2014, 16(2): 193–204.

[85] XU Xiaoming, YU Shui, LUO Zongqiang, et al. Comparative study on formation conditions of large gas fields in North Carnarvon basin and Bonaparte Basin[J]. Journal of Oil and Gas Technology, 2014, 36(2): 6–11. 许晓明, 于水, 骆宗强, 等. 北卡那封盆地与波拿巴盆地大气田形成条件对比研究[J]. 石油天然气学报, 2014, 36(2): 6–11.

[86] JIANG Xiongying, FU Zhifei. Petroleum geological features and exploration potential of Browse Basin in Australia[J]. Journal of Oil and Gas Technology, 2010, 32(2): 54–57. 姜雄鹰, 傅志飞. 澳大利亚布劳斯盆地构造地质特征及勘探潜力[J]. 石油天然气学报, 2010, 32(2): 54–57.

[87] WANG Yun. Oil and gas geological characteristics of Braus basin in deep water area of northwest shelf, Australia[J]. Ground Water, 2018, 40(1): 121–123. 王云. 澳大利亚西北陆架深水区布劳斯盆地油气地质特征研究[J]. 地下水, 2018, 40(1): 121–123.

[88] HOU Yuguang, HE Sheng, YANG Xianghua, et al. Geochemical characteristics and development model of transitional source rocks during the continental margin rifting stage, Bonaparte Basin, Australia[J]. Petroleum Geology and Experiment, 2015, 37(3): 374–382. 侯宇光, 何生, 杨香华, 等. 澳大利亚波拿巴盆地大陆边缘裂陷期海陆过渡相烃源岩地球化学特征与发育模式[J]. 石油实验地质, 2015, 37(3): 374–382.

[89] BAI Guoping, YIN Jinyin. Petroleum geological features and exploration potential analyses of north Carnavon Basin, Australia[J]. Petroleum Geology and Experiment, 2007, 29(3): 253–258. 白国平, 殷进垠. 澳大利亚北卡那封盆地油气地质特征及勘探潜力分析[J]. 石油实验地质, 2007, 29(3): 253–258.

[90] YAO Yongjian, LYU Caili, KANG Yongshang, et al. Characteristics of hydrocarbon source rocks and their main controlling factors in Southeast Asia[J]. Earth Science, 2013, 38(2): 367–378. 姚永坚, 吕彩丽, 康永尚, 等. 东南亚地区烃源岩特征与主控因素[J]. 地球科学, 2013, 38(2): 367–378.

[91] QIU Nansheng, WANG Xulong, YANG Haibo, et al. The characteristics of temperature distribution in the Junggar Basin[J]. Chinese Journal of Geology, 2001, 36 (3): 350–358. 邱楠生, 王绪龙, 杨海波, 等. 准噶尔盆地地温分布特征[J]. 地质科学, 2001, 36(3): 350–358.

[92] ZHANG Shihuan, WANG Zhiyong, ZHANG Chaofu. Preliminery study on the relation between the coal source rock characteristics and oilgas distribution in Turpan-Hami Basin[J]. Xinjiang Petroleum Geology, 1996, 17(1): 29–33. 张世焕, 王志勇, 张朝富. 吐哈盆地煤系烃源岩特征与油气分布关系初探[J]. 新疆石油地质, 1996, 17(1): 29–33.

[93] WU Zhiyuan. Evaluation of coal measure source rocks and Study on hydrocarbon accumulation mechanism in Shisanjianfang and surrounding areas[D]. Beijing: China University of Mining and Technology(Beijing), 2017. 吴志远. 十三间房及周围地区煤系烃源岩评价及油气成藏机制研究[D]. 北京: 中国矿业大学(北京), 2017.

[94] DANG Ben, ZHAO Hong, JIANG Changyi. Preliminary studies and characteristics of the Jurassic hydrocarbon source rocks in the northern Tarim Basin[J]. Journal of Earch Sciences and Environment, 2004, 26(1): 1–5. 党犇, 赵虹, 姜常义. 塔里木盆地东北部侏罗系烃源岩特征及初步评价[J]. 地球科学与环境学报, 2004, 26(1): 1–5.

[95] PAN Quanyong. Geotemperature gradient distribution of Tarim Basin, Northwest, China[J]. Inner Mongolia Petrochemical Industry, 2018, 44(10): 52–55. 潘泉涌. 塔里木盆地台盆区地温梯度分布特征[J]. 内蒙古石油化工, 2018, 44(10): 52–55.

[96] LI Zongxing, GAO Jun, LI Wenfei, et al. The characteristics of geothermal field and controlling factors in Qaidam Basin, Northwest China[J]. Earth Science Frontiers, 2016, 23(5): 23–32. 李宗星, 高俊, 李文飞, 等. 柴达木盆地地温场分布特征及控制因素[J]. 地学前缘, 2016, 23(5): 23–32.

[97] REN Zhanli. Study on geothermal history of Ordos Basin by apatite fission track method[J]. Chinese Journal of Geophysics, 1995, 38(3): 339–349. 任战利. 利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J]. 地球物理学报, 1995, 38(3): 339–349.

[98] GUO Pei, LIU Chiyang, WANG Jianqiang, et al. Carboniferous sedimentary evolution of southern Ningxia and its source rock evaluation[J]. Bulletin of Geological Science and Technology, 2015, 34(3): 15–23. 郭佩, 刘池洋, 王建强, 等. 宁南地区石炭系沉积演化及烃源岩评价[J]. 地质科技情报, 2015, 34(3): 15–23.

[99] JIN Xianglan, ZHANG Hui. Distributing features of Jurassic coal measures hydrocarbon source rock in Northeastern Ordos Basin[J]. Coal Geology of China, 2010, 22(1): 15–19. 晋香兰, 张慧. 鄂尔多斯盆地东北部侏罗纪煤系烃源岩的分布特征[J]. 中国煤炭地质, 2010, 22(1): 15–19.

[100] HUANG Wenhui, AO Weihua, XIAO Xiuling, et al. Hydrocarbon generation potential evaluation of Jurassic coal bearing strata in Ordos Basin[J]. Journal of China Coal Society, 2011, 36(3): 461–467. 黄文辉, 敖卫华, 肖秀玲, 等. 鄂尔多斯盆地侏罗纪含煤岩系生烃潜力评价[J]. 煤炭学报, 2011, 36(3): 461–467.

[101] KE Weili, TONG Xiaoguang, WEN Zhixin, et al. Petroleum geological characteristics and exploration potential of West Bengal Basin Group[J]. Journal of Southwest Petroleum University(Natural Science Edition), 2014, 36(6): 9–17. 客伟利, 童晓光, 温志新, 等. 孟加拉湾西侧盆地群油气地质特征与勘探潜力[J]. 西南石油大学学报(自然科学版), 2014, 36(6): 9–17.

[102] HU shengbiao, LONG Zulie, ZHU Junzhang, et al. Characteristics of geothermal field and tectonic thermal evolution of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(Sup. 1): 178–187. 胡圣标, 龙祖烈, 朱俊章, 等. 珠江口盆地地温场特征及构造–热演化[J]. 石油学报, 2019, 40(增刊1): 178–187.

[103] ZHU Ming, ZHANG Xiangtao, HUANG Yuping, et al. Characteristics and resource potential of source rocks in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(Sup. 1): 53–68. 朱明, 张向涛, 黄玉平, 等. 珠江口盆地烃源岩特征及资源潜力[J]. 石油学报, 2019, 40(增刊1): 53–68.

[104] YANG Shuchun, HU Shengbiao, CAI Dongsheng, et al. Present-day heat flow, thermal history and tectonic subsidence of the East China Sea Basin[J]. Marine and Petroleum Geology, 2004, 21: 1095–1105.

[105] FENG Xiaojie, CAI Dongsheng. Controls of Mesozoic and Cenozoic tectonic evolution on source rock distribution in East China Sea Shelf Basin[J]. China Offshore Oil and Gas, 2006, 18(6): 372–375. 冯晓杰, 蔡东升. 东海陆架盆地中新生代构造演化对烃源岩分布的控制作用[J]. 中国海上油气, 2006, 18(6): 372–375.

[106] CAO Bing. Study of burial and thermal history of Huagang Formation tight sandstone reservoir in central reversal structural belt, Xihu Depression, East China Sea[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(4): 405–414. 曹冰. 西湖凹陷中央反转构造带花港组致密砂岩储层埋藏史–热史[J]. 成都理工大学学报(自然科学版), 2016, 43(4): 405–414.

[107] TIAN Xin. Study on hydrocarbon accumulation and fine exploration in South Sumatra Basin, Indonesia[D]. Chengdu: Chengdu University of Technology, 2016. 田鑫. 印尼南苏门答腊盆地油气成藏规律研究及油气藏精细勘探[D]. 成都: 成都理工大学, 2016.

[108] LIU Zhenhu, WU Jinmin. Petroleum geology of Wan'an Basin, South China Sea[J]. China Offshore Oil and Gas, 1997, 11(3): 1–8. 刘振湖, 吴进民. 南海万安盆地油气地质特征[J]. 中国海上油气(地质), 1997, 11(3): 1–8.

[109] CURIALE J, LIN R, DECKER J. Isotopic and molecular characteristics of Miocene-reservoired oils of the Kutei Basin, Indonesia[J]. Organic Geochemistry, 2005, 36: 405–424.

[110] LU Yintao, LUAN Xiwu, SHI Buqing, et al. Characteristics of Lower Miocene marine petroleum play and prospective petroleum accumulation region in the Kutei Basin, the Kalimantan Island[J]. Marine Science, 2019, 43(1): 38–49. 鲁银涛, 栾锡武, 史卜庆, 等. 加里曼丹岛库泰盆地海相成藏组合特征及油气富集区分带性分析[J]. 海洋科学, 2019, 43(1): 38–49.

[111] TODD S, DUNN M, BARWISE A. Characterizing petroleum charge systems in the tertiary of SE Asia[J]. Petroleum Geology of Southeast Asia, 1997, 126: 25–47.

[112] ZHUANG Jiaqing. Petroleum geological characteristics and exploration potential of Northwest continental shelf in Australia: A case study of North Carnarvon Basin[J]. Inner Mongolia Petrochemical Industry, 2011, 37(9): 186–190. 张家青. 澳大利亚西北大陆架油气地质特征及勘探潜力: 以北卡那封盆地为例[J]. 内蒙古石油化工, 2011, 37(9): 186–190.

[113] LI Yan. Petroleum system analysis and resource evaluation of North Carnarvon basin, Australia[D]. Beijing: China University of Petroleum(Beijing), 2018. 李燕. 澳大利亚北卡那封盆地含油气系统分析与资源评价[D]. 北京: 中国石油大学(北京), 2018.

[114] GONG Chenglin, WANG Yingmin, CUI Gang, et al. Structural evolution and sequence stratigraphy of North Bonaparte Basin[J]. Marine Geology Quaternary Geology, 2010, 30(2): 103–109. 龚承林, 王英民, 崔刚, 等. 北波拿巴盆地构造演化与层序地层学[J]. 海洋地质与第四纪地质, 2010, 30(2): 103–109.

[115] DUAN Wei, HOU Yuguang, HE Sheng, et al. Thermal evolution differences and its geological significances of organic matter of Paleozoic shale in Petrel subbasin, Bonaparte Basin, Australia[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(6): 17–23. 段威, 侯宇光, 何生, 等. 澳大利亚波拿巴盆地Petrel次盆古生界页岩有机质热演化的差异及其地质意义[J]. 中国石油大学学报(自然科学版), 2013, 37(6): 17–23.

[116] YU Huijuan, TUO Jincai, LIU Luofu, et al. Geochemical characteristics and evaluation on hydrocarbon generation potentials of source rocks in Jurassic Eastern Qaidam Basin[J]. Acta Sedimentologica Sinica, 2000, 18(1): 132–138. 于会娟, 妥进才, 刘洛夫, 等. 柴达木盆地东部地区侏罗系烃源岩地球化学特征及生烃潜力评价[J]. 沉积学报, 2000, 18(1): 132–138.

[117] XIAO Xianming, LIU Dehan, FU Jiamo. The evaluation of coal-measure source rocks of coal-bearing basins in China and their hydrocarbon-generating models[J]. Acta Sedimentologica Sinica, 1996, 14(Sup. 1): 10–17. 肖贤明, 刘德汉, 傅家谟. 我国聚煤盆地煤系烃源岩生烃评价与成烃模式[J]. 沉积学报, 1996, 14(增刊1): 10–17.

[118] LEI Chuang, YE Jiaren, WANG Xiuping, et al. Characteristics and thermal evolution of source rocks of Plover Formation in the Northern Bonaparte Basin, Australia[J]. Bulletin of Geological Science and Technology, 2011, 30(1): 108–113. 雷闯, 叶加仁, 王修平, 等. 澳大利亚北波拿巴盆地Plover组烃源岩特征及热演化[J]. 地质科技情报, 2011, 30(1): 108–113.

[119] LI Shaojie. Study on the formation model of coal measure source rocks in the northern basin of South China Sea[D]. Wuhan: China University of Geosciences, 2015. 李劭杰. 南海北部盆地煤系烃源岩形成模式研究[D]. 武汉: 中国地质大学, 2015.

[120] XIAN Zhiyao. Organic geochemical characteristics and oil-gas source correlation of source rocks in Block D of Myanmar[D]. Chengdu: Chengdu University of Technology, 2012. 鲜志尧. 缅甸D区块烃源岩有机地球化学特征及油气源对比[D]. 成都: 成都理工大学, 2012.

[121] LAN Lei. Characteristics of source rocks in the southern basin of the South China Sea and their influence on petroliferous properties[J]. Bulletin of Geological Science and Technology, 2019, 38(4): 23–29. 兰蕾. 南海南部盆地烃源岩特征及其对含油气性的影响[J]. 地质科技情报, 2019, 38(4): 23–29.

[122] PETERS K E, WALTERS C C, MORWAN J M. Guide to biomarkers, Second Edition-Volume Ⅱ[M]. Beijing: Petroleum Industry Press, 1995. 彼得斯K E, 沃尔特斯C C, 莫尔多万J M. 生物标志化合物指南第二版–下册[M]. 北京: 石油工业出版社, 1995.

[123] XUE Peilin. Coal accumulation process of Late Paleozoic in Shanxi[J]. Fossil, 2018(3): 28–30. 薛沛霖. 山西晚古生代的聚煤历程[J]. 化石, 2018(3): 28–30.

[124] QU Tong, GAO Gang, XU Xinde, et al. Control factors of terrestrial organic matter distribution in delta-shallow sea sedimentary system[J]. Acta Sedimentologica Sinica, 2020, 38(3): 648–660. 屈童, 高岗, 徐新德, 等. 三角洲—浅海沉积体系陆源有机质分布控制因素[J]. 沉积学报, 2020, 38(3): 648–660.

[125] HAN Bing, LI Xuejie, LYU Jianrong, et al. Petroleum exploration potential of bay of Bengal deep water basin[J]. Marine Geology Frontiers, 2012, 28(4): 50–56. 韩冰, 李学杰, 吕建荣, 等. 孟加拉湾深水盆地油气勘探潜力[J]. 海洋地质前沿, 2012, 28(4): 50–56.

[126] JIANG Yiming, SHAO Longyi, LI Shuai, et al. Deposition system and stratigraphy of Pinghu formation in Pinghu Tectonic Belt, Xihu Sag[J]. Geoscience, 2020, 34(1): 141–153. 蒋一鸣, 邵龙义, 李帅, 等. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究[J]. 现代地质, 2020, 34(1): 141–153.

[127] LI juyun, JIANG Bo, QU Zhenghui, et al. Tectonic evolution and control of coal in Donghai Xihu sag[J]. Coal Geology & Exploration, 2016, 44(5): 22–27. 李居云, 姜波, 屈争辉, 等. 东海西湖凹陷构造演化及控煤作用[J]. 煤田地质与勘探, 2016, 44(5): 22–27.

[128] GONG Heyan. Tectonic evolution of Zhusan depression in Pearl River Mouth Basin and its control on coal measures source rocks[D]. Xuzhou: China University of Mining and Technology, 2014. 宫贺晏. 珠江口盆地珠三坳陷构造演化及其对煤系烃源岩的控制[D]. 徐州: 中国矿业大学, 2014.

[129] XIONG Binhui, WANG Chunhong, ZHANG Jinwei, et al. The distribution and exploration implications of coal beds of Pinghu Formation, Paleologene in Xihu Sag[J]. Offshore Oil, 2007, 27(3): 27–33. 熊斌辉, 王春红, 张锦伟, 等. 西湖凹陷古近系平湖组煤层分布及油气意义[J]. 海洋石油, 2007, 27(3): 27–33.

[130] YANG Minghui, ZHANG Houhe, LIAO Zongbao, et al. Tectonic evolution and hydrocarbon accumulation of the sedimentary basins in Nansha Sea Waters(South China Sea)[J]. Geotectonica et Metallogenia, 2017, 41(4): 710–720. 杨明慧, 张厚和, 廖宗宝, 等. 南海南沙海域沉积盆地构造演化与油气成藏规律[J]. 大地构造与成矿学

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.