•  
  •  
 

Coal Geology & Exploration

Abstract

To accurately predict the productivity of CBM wells, a multi-level fuzzy mathematics method was used to establish a comprehensive evaluation model including 3 secondary evaluation parameters(i.e. resource conditions, development conditions, and transformation processes) and 10 tertiary evaluation parameters. Combined with the data of reservoir parameters and stimulation technologies of 15 coalbed methane target blocks in China, the comprehensive evaluation work was carried out using the model. Finally, the actual production of each block was collected to verify the evaluation results, and the corresponding relationship between the evaluation results and the production was obtained. The results show that, the average daily production per well in most blocks does not exceed 600 m3/d, and the evaluation score is relatively concentrated below 0.64, which is mainly due to the poor development conditions and unreasonable reservoir stimulation. The production per well has a good correlation with the comprehensive evaluation results, and the relationship between them is power function. According to the evaluation results, when the comprehensive score exceeds 0.660 6, the average daily production per well is expected to exceed 1 000 m3. The research results shows that, on the one hand, it is necessary to strengthen reservoir evaluation and optimize favorable areas; on the other hand, optimizing suitable reservoir stimulation measures, to maximize the production capacity of coalbed methane development.

Keywords

CBM, AHP, fuzzy mathematics, comprehensive evaluation, productivity prediction

DOI

10.3969/j.issn.1001-1986.2021.02.016

Reference

[1] 张新民,赵靖舟,张培河,等. 中国煤层气技术可采资源潜力[J]. 煤田地质与勘探,2007,35(4):23-26. ZHANG Xinmin,ZHAO Jingzhou,ZHANG Peihe,et al. China coalbed gas technically recoverable resource potential[J]. Coal Geology & Exploration,2007,35(4):23-26.

[2] 韩俊,邵龙义,肖建新,等. 多层次模糊数学在煤层气开发潜力评价中的应用[J]. 煤田地质与勘探,2008,36(3):31-35. HAN Jun,SHAO Longyi,XIAO Jianxin,et al. Application of multi-layered fuzzy mathematics in assessment of exploitation potential of coalbed methane resources[J]. Coal Geology & Exploration,2008,36(3):31-35.

[3] FU Haijiao,TANG Dazhen,XU Hao,et al. Geological characteristics and CBM exploration potential evaluation:A case study in the middle of the southern Junggar Basin,NW China[J]. Journal of Natural Gas Science & Engineering,2016,30:557-570.

[4] 王安民,曹代勇,魏迎春. 煤层气选区评价方法探讨:以准噶尔盆地南缘为例[J]. 煤炭学报,2017,42(4):950-958. WANG Anmin,CAO Daiyong,WEI Yingchun. Discussion on methods for selected areas evaluation of coalbed methane:A case study of southern Junggar Basin[J]. Journal of China Coal Society,2017,42(4):950-958.

[5] WANG Gang,QIN Yong,XIE Yiwei,et al. Coalbed methane system potential evaluation and favourable area prediction of Gujiao blocks,Xishan coalfield,based on multi-level fuzzy mathematical analysis[J]. Journal of Petroleum Science and Engineering,2018,160:136-151.

[6] SHAO Longyi,HOU Haihai,TANG Yue,et al. Selection of strategic replacement areas for CBM exploration and development in China[J]. Natural Gas Industry B,2015,2(2/3):211-221.

[7] 张宝生,彭贤强,罗东坤. 中国煤层气目标区综合评价与优选研究[J]. 资源科学,2009,31(4):681-686. ZHANG Baosheng,PENG Xianqiang,LUO Dongkun. Research on comprehensive evaluation and ranking of China's coalbed methane perspectives[J]. Resource Science,2009,31(4):681-686.

[8] 林然,倪小明,王延斌. 山西沁水盆地樊庄区块煤层气高产区预测[J]. 高校地质学报,2012,18(3):558-562. LIN Ran,NI Xiaoming,WANG Yanbin. Prediction of high CBM production area in the Fanzhuang block of the Qinshui Basin,Shanxi Province[J]. Geological Journal of China Universities,2012,18(3):558-562.

[9] 吕玉民,梁建设,柳迎红,等. 基于测井信息的煤层气有利区多层次模糊综合评价模型:以寿阳区块为例[J]. 煤田地质与勘探,2016,44(1):56-61. LYU Yumin,LIANG Jianshe,LIU Yinghong,et al. Multi-level fuzzy comprehensive evaluation model for favorable coalbed methane development area based on logging information:A case of Shouyang block[J]. Coal Geology & Exploration,2016,44(1):56-61.

[10] 李贵红. 鄂尔多斯盆地东缘煤层气有利区块优选[J]. 煤田地质与勘探,2015,43(2):28-32. LI Guihong. Selection of the favorable coalbed methane(CBM) blocks in eastern Ordos Basin[J]. Coal Geology & Exploration,2015,43(2):28-32.

[11] 侯海海,邵龙义,唐跃,等. 基于多层次模糊数学的中国低煤阶煤层气选区评价标准:以吐哈盆地为例[J]. 中国地质,2014,41(3):1002-1009. HOU Haihai,SHAO Longyi,TANG Yue,et al. Criteria for selected areas evaluation of low rank CBM based on multi-layered fuzzy mathematics:A case study of Turpan-Hami Basin[J]. Geology in China,2014,41(3):1002-1009.

[12] 张硕,张小东,李学文,等. 沁水盆地南部煤层气储层特征及可采性研究[J]. 中国煤炭地质,2015,27(11):9-13. ZHANG Shuo,ZHANG Xiaodong,LI Xuewen,et al. CBM reservoir features and recoverability study in southern Qinshui Basin[J]. Coal Geology of China,2015,27(11):9-13.

[13] 赵庆波,张公明. 煤层气评价重要参数及选区原则[J]. 石油勘探与开发,1999,26(2):23-26. ZHAO Qingbo,ZHANG Gongming. Important parameters in the evaluation of coalbed gas and principles for screening exploration target[J]. Petroleum Exploration and Development,1999,26(2):23-26.

[14] 康红普,姜铁明,张晓,等. 晋城矿区地应力场研究及应用[J]. 岩石力学与工程学报,2009,28(1):1-8. KANG Hongpu,JIANG Tieming,ZHANG Xiao,et al. Research on in-situ stress field in Jincheng mining area and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(1):1-8.

[15] 赵欣,姜波,张尚锟,等. 鄂尔多斯盆地东缘三区块煤层气井产能主控因素及开发策略[J]. 石油学报,2017,38(11):1310-1319. ZHAO Xin,JIANG Bo,ZHANG Shangkun,et al. Main controlling factors of productivity and development strategy of CBM wells in Block 3 on the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2017,38(11):1310-1319.

[16] 苏现波,林晓英. 煤层气地质学[M]. 北京:煤炭工业出版社,2009. SU Xianbo,LIN Xiaoying. Coalbed methane geology[M]. Beijing:China Coal Industry Publishing House,2009.

[17] SU Xianbo,WANG Qian,SONG Jinxing,et al. Experimental study of water blocking damage on coal[J]. Journal of Petroleum Science & Engineering,2017,156:654-661.

[18] 宋金星,于世耀,苏现波. 煤储层速敏伤害机理及防速敏试验研究[J]. 煤炭科学技术,2018,46(6):173-177. SONG Jinxing,YU Shiyao,SU Xianbo. Study on velocity sensitivity damage mechanism and its proof test of coal reservoir[J]. Coal Science and Technology,2018,46(6):173-177.

[19] 宋金星,于世耀,苏现波,等. 表面活性剂压裂液的防水锁增产机理实验[J]. 煤田地质与勘探,2019,47(2):98-102. SONG Jinxing,YU Shiyao,SU Xianbo,et al. Experimental of water unlocking stimulation mechanism on surfactant fracturing fluid[J]. Coal Geology & Exploration,2019,47(2):98-102.

[20] 夏鹏. 西山煤田古交矿区煤层气富集规律及产能主控因素研究[D]. 太原:太原理工大学,2017. XIA Peng. The study of coalbed methane enrichment rule and productivity dominating parameters in the Gujiao area,Xishan coalfield[D]. Taiyuan:Taiyuan University of Technology,2017.

[21] 唐军. 山西省重点煤矿区煤层气开发单元划分:以晋城和阳泉矿区为例[D]. 徐州:中国矿业大学,2018. TANG Jun. The division of CBM development unit of key coal mining area in Shanxi Province:Take Jincheng and Yangquan mining area as examples[D]. Xuzhou:China University of Mining and Technology,2018.

[22] 许耀波,朱玉双,张培河. 沁水盆地赵庄井田煤层气产出特征及其影响因素[J]. 天然气地球科学,2019,30(1):119-125. XU Yaobo,ZHU Yushuang,ZHANG Peihe. The characteristics of coalbed methane production and its affecting factors in Zhaozhuang field,Qinshui Basin[J]. Natural Gas Geoscience,2019,30(1):119-125.

[23] 汪万红. 构造煤煤层气分压合排产气效果及影响因素分析[J]. 煤炭科学技术,2019,47(2):120-124. WANG Wanhong. Analysis on effect of gas production and influence factors of CBM separate layer pressure control and multi-layer drainage in tectonic coal mining area[J]. Coal Science and Technology,2019,47(2):120-124.

[24] 陈杨. 沁水盆地郑庄区块煤层气井压裂效果与产能评价研究[D]. 北京:中国地质大学(北京),2015. CHEN Yang. Study on fracturing effect and productivity evaluation of coalbed methane wells in Zhengzhuang block,Qinshui Basin[D]. Beijing:China University of Geosciences(Beijing),2015.

[25] 张建国,刘忠,姚红星,等. 沁水煤层气田郑庄区块二次压裂增产技术研究[J]. 煤炭科学技术,2016,44(5):59-63. ZHANG Jianguo,LIU Zhong,YAO Hongxing,et al. Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang block of Qinshui coalbed methane field[J]. Coal Science and Technology,2016,44(5):59-63.

[26] CHEN Shida,TANG Dazhen,TAO Shu,et al. Characteristics of in-situ stress distribution and its significance on the coalbed methane(CBM) development in Fanzhuang-Zhengzhuang block,southern Qinshui Basin,China[J]. Journal of Petroleum Science & Engineering,2018,161:108-120.

[27] 付玉通. 延川南深部煤层气地质特征与水平井开发技术地质适配性研究[D]. 徐州:中国矿业大学,2018. FU Yutong. Study on geological characteristics of the deep CBM and adaptability of horizontal well development techniques with them in the southern Yanchuan block[D]. Xuzhou:China University of Mining and Technology,2018.

[28] 杨恒,罗宪,孙长彦. 焦作马厂勘查区煤层气富集规律及主控因素研究[J]. 煤炭科学技术,2020,48(3):180-187. YANG Heng,LUO Xian,SUN Changyan. Research on law of coalbed methane enrichment and main controlling factors in Jiaozuo Machang exploration area[J]. Coal Science and Technology,2020,48(3):180-187.

[29] 陈恩尧. 鄂尔多斯盆地柳林区块煤层气开发地质再认识及开发方式评价[D]. 北京:中国地质大学(北京),2019. CHEN Enyao. Re-understanding on geological of coalbed methane development and evaluation of development mode in Liulin block of Ordos basin[D]. Beijing:China University of Geosciences(Beijing),2019.

[30] LI Yong,TANG Dazhen,XU Hao,et al. In-situ stress distribution and its implication on coalbed methane development in Liulin area,eastern Ordos Basin,China[J]. Journal of Petroleum Science & Engineering,2014,122:488-496.

[31] 任建华,张亮,任韶然,等. 柳林煤层气区块不同井型产能分析研究[J]. 煤炭学报,2015,40(增刊1):158-163. REN Jianhua,ZHANG Liang,REN Shaoran,et al. Productivity analysis of different types wells in Liulin coalbed methane block[J]. Journal of China Coal Society,2015,40(Sup.1):158-163.

[32] 王丹. 临汾区块煤层气富集及产能影响因素研究[D]. 北京:中国矿业大学(北京),2016. WANG Dan. The research of affective facts of production and enrichment of CBM in Linfen block[D]. Beijing:China University of Mining and Technology(Beijing),2016.

[33] 刘川庆,朱卫平,夏飞,等. 鄂尔多斯盆地大宁-吉县区块煤层气水平井分段压裂实践[J]. 天然气工业,2018,38(增刊1):112-117. LIU Chuanqing,ZHU Weiping,XIA Fei,et al. Practice of staged fracturing of coalbed methane horizontal wells in Daning-Jixian block of Ordos Basin[J]. Natural Gas Industry,2018,38(Sup.1):112-117.

[34] 聂志宏,巢海燕,刘莹,等. 鄂尔多斯盆地东缘深部煤层气生产特征及开发对策:以大宁-吉县区块为例[J]. 煤炭学报,2018,43(6):1738-1746. NIE Zhihong,CHAO Haiyan,LIU Ying,et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin:Taking Daning-Jixian block for example[J]. Journal of China Coal Society,2018,43(6):1738-1746.

[35] WANG Qian,SU Xianbo,SU Linan,et al. CBM geological characteristics and exploration potential in the Sunan Syncline block,southern North China Basin[J]. Journal of Petroleum Science & Engineering,2020,186:106713.

[36] 薛海飞,朱光辉,王伟,等. 沁水盆地柿庄区块煤层气井压裂增产效果关键影响因素分析与实践[J]. 煤田地质与勘探,2019,47(4):76-81. XUE Haifei,ZHU Guanghui,WANG Wei,et al. Analysis and application of key influencing factors of CBM well fracturing effects in Shizhuang area,Qinshui Basin[J]. Coal Geology & Exploration,2019,47(4):76-81.

[37] 姚帅. 比德-三塘盆地异常压力分布规律及其构造控制机制[D]. 徐州:中国矿业大学,2015. YAO Shuai. Abnormal pressure distribution rule and tectonical control mechanism in Bide-Santang Basin[D]. Xuzhou:China University of Mining and Technology,2015.

[38] ZHANG Zhengguang,QIN Yong,YANG Zhaobiao,et al. Fluid energy characteristics and development potential of coalbed methane reservoirs with different synclines in Guizhou,China[J]. Journal of Natural Gas Science and Engineering,2019,71:102981.

[39] 赵欣. 煤层气产能主控因素及开发动态特征研究[D]. 徐州:中国矿业大学,2017. ZHAO Xin. The study of main influence factors on productivity of coalbed methane well and the development performance[D]. Xuzhou:China University of Mining and Technology,2017.

[40] 牟全斌,韩保山,张培河,等. 潘庄地区煤层气U型水平井技术工艺研究[J]. 中国煤炭地质,2014,26(11):53-56. MOU Quanbin,HAN Baoshan,ZHANG Peihe,et al. Research on U-shaped horizontal CBM well technologies used in the Panzhuang area[J]. Coal Geology of China,2014,26(11):53-56.

[41] 王勃. 沁水盆地煤层气富集高产规律及有利区块预测评价[D]. 徐州:中国矿业大学,2013. WANG Bo. Coalbed methane enrichment and high-production rule & prospective area prediction in Qinshui Basin[D]. Xuzhou:China University of Mining and Technology,2013.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.