•  
  •  
 

Coal Geology & Exploration

Abstract

As a revolutionary technology for rock stratum reformation, the controllable shock wave(CSW) fracturing technology has achieved remarkable effect in coal seam reconstruction, and application exploration in the field of coal safety mining has been carried out. However, the previous understanding of the basic CWS fracturing rules under the constraints of geological engineering factors is insufficient due to the limitation of experimental and field monitoring conditions, which restricts the exploration of the fracturing mechanism and the optimization of the field operation parameters. In view of this, based on the description of CSW coal seam reformation and its engineering scientific problems, the CDEM method is used to carry out numerical simulation in order to further reveal the behavior and basic rules of CSW coal seam fracturing under the constraints of geo-stress, mechanical properties of coal and rock, and shock wave loading conditions. The results show that the influence of CSW loading conditions on the fracturing effect has an optimal range, and excessive loading will lead to coal disintegration near the wellbore, which increases the yield of pulverized coal and cause coal reservoir damage. At the same time, the wave impedance and shock wave attenuation increase due to coal fragmentation, which limits the expansion of fracturing radius. There are critical values of fracturing radius and fracturing degree with the increase of geo-stress and the horizontal principal stress difference significant effects on the morphology, expansion direction and connectivity of CSW-induced fractures. It is revealed that the fracturing effect has a selective response to the mechanical properties of coal:there is a critical value of inflection point in the plots of the elastic modulus to fracturing radius and fracturing degree; with the increase of cohesion, the brittleness of coal becomes smaller, and the fracturing effect becomes worse; the tensile strength seems to have no obvious effect on the CSW fracturing effect. Based on the above, there will be good references for the coal seam optimization and parameter optimization measures of CSW operation.

Keywords

controllable shock wave, coal seam, reformation effect, constraint conditions, numerical simulation

DOI

10.3969/j.issn.1001-1986.2021.01.011

Reference

[1] 邱爱慈,张永民,蒯斌,等. 高功率脉冲技术在非常规天然气开发中应用的设想[C]//谢克昌,黄其励. 中国工程院/国家能源局第二届能源论坛论文集. 北京:2012:22-24. QIU Aici,ZHANG Yongmin,KUAI Bin,et al. Application assumption of high power pulse technology in unconventional natural gas development[C]//XIE Kechang,HUANG Qili. Proceedings of the second energy forum of Chinese Academy of Engineering and National Energy Administration. Beijing:2012:22-24.

[2] 秦勇,邱爱慈,张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术,2014,42(6):1-7. QIN Yong,QIU Aici,ZHANG Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology,2014,42(6):1-7.

[3] 张永民,邱爱慈,周海滨,等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高压电技术,2016,42(4):1009-1017. ZHANG Yongmin,QIU Aici,ZHOU Haibin,et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering,2016,42(4):1009-1017.

[4] 赵丽娟. 煤岩波动致裂增渗物理模拟[D]. 徐州:中国矿业大学,2014. ZHAO Lijuan. Physical simulation of fracturing and permeability enhancement of coals under wave action[D]. Xuzhou:China University of Mining and Technology,2014.

[5] 李恒乐. 煤岩电脉冲应力波致裂增渗行为与机理[D]. 徐州:中国矿业大学,2015. LI Hengle. Behavior and mechanism of fracturing and enhanced-permeability of coals with electric pulse stress waves[D]. Xuzhou:China University of Mining and Technology,2015.

[6] 李恒乐,秦勇,张永民,等. 重复脉冲强冲击波对肥煤孔隙结构影响的实验研究[J]. 煤炭学报,2015,40(4):915-921. LI Hengle,QIN Yong,ZHANG Yongmin,et al. Experimental study on the effect of strong repetitive pulse shockwave on the pore structure of fat coal[J]. Journal of China Coal Society,2015,40(4):915-921.

[7] 周晓亭,秦勇,李恒乐,等. 电脉冲应力波作用下煤体微裂隙形成与发展过程[J]. 煤炭科学技术,2015,43(2):127-130. ZHOU Xiaoting,QIN Yong,LI Hengle,et al. Formation and development of coal micro-fractures under stress wave induced by electrical impulses[J]. Coal Science and Technology,2015,43(2):127-130.

[8] 卢红奇. 高压电脉冲对煤体致裂作用实验研究[D]. 北京:中国矿业大学(北京),2015. LU Hongqi. Experimental research on fracturing coal with high-voltage electrical pulse[D]. Beijing:China University of Mining & Technology(Beijing),2015.

[9] SHI Qingmin,QIN Yong,LI Hengle,et al. Response of pores in coal to repeated strong impulse waves[J]. Journal of Natural Gas Science & Engineering,2016,34:298-304.

[10] 周晓亭. 重复电脉冲波煤岩致裂增渗效果岩石学分析[D]. 徐州:中国矿业大学,2016. ZHOU Xiaoting. Coal petrology analysis of effect for enhancing coal reservoir permeability with repetitive electric pulses wave[D]. Xuzhou:China University of Mining and Technology,2016.

[11] 隋义勇,张永民,李加强,等. 脉冲冲击波有效作用距离影响因素模拟分析[J]. 中国石油大学学报(自然科学版),2016,40(5):118-122. SUI Yiyong,ZHANG Yongmin,LI Jiaqiang,et al. Numerical simulation study on parameters impacting effective influence distance of pulse shock waves for well stimulation[J]. Journal of China University of Petroleum(Edition of Natural Science),2016,40(5):118-122.

[12] 周海滨,刘巧珏,赵有志,等. 脉冲大电流放电引爆含能材料产生冲击波的储层改造[J]. 强激光与粒子束,2016,28(4):196-200. ZHOU Haibin,LIU Qiaojue,ZHAO Youzhi,et al. Transformation of oil-and-gas reservoir with shock waves by high current pulsed discharge ignited energetic materials explosion[J]. High Power Laser and Particle Beams,2016,28(4):196-200.

[13] 鲍先凯,杨东伟,段东明,等. 高压电脉冲水力压裂法煤层气增透的试验与数值模拟[J]. 岩石力学与工程学报,2017,36(10):2415-2423. BAO Xiankai,YANG Dongwei,DUAN Dongming,et al. The experiment and numerical simulation of penetration of coalbed methane upon hydraulic fracturing under high-voltage electric pulse[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(10):2415-2423.

[14] 张永民,邱爱慈,秦勇,等. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术,2017,45(9):79-85. ZHANG Yongmin,QIU Aici,QIN Yong,et al. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology,2017,45(9):79-85.

[15] 白建梅,程浩,祖世强,等. 大功率脉冲技术对低产煤层气井增产可行性探讨[J]. 中国煤层气,2010,7(6):24-26. BAI Jianmei,CHENG Hao,ZU Shiqiang,et al. Discussion on feasibility of enhancing production of low:Production CBM wells by using powerful pulse techniques[J]. China Coalbed Methane,2010,7(6):24-26.

[16] 张永民,邱爱慈,秦勇. 可控冲击波增透松软煤层的工程实践[J]. 山西焦煤科技,2017(8/9):116-121. ZHANG Yongmin,QIU Aici,QIN Yong. Engineering practice on controllable shock wave reinforcement on soft coal seam[J]. Shanxi Coking Coal Science & Technology,2017(8/9):116-121.

[17] 张永民,蒙祖智,秦勇,等. 松软煤层可控冲击波增透瓦斯抽采创新实践:以贵州水城矿区中井煤矿为例[J]. 煤炭学报,2019,44(8):2388-2400. ZHANG Yongmin,MENG Zuzhi,QIN Yong,et al. Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction:A case of Zhongjing Mine,Shuicheng,Guizhou Province,China[J]. Journal of China Coal Society,2019,44(8):2388-2400.

[18] 张永民,安世岗,陈殿赋,等. 可控冲击波增透保德煤矿8#煤层的先导性试验[J]. 煤矿安全,2019,50(10):14-17. ZHANG Yongmin,AN Shigang,CHEN Dianfu,et al. Preliminary tests of coal reservoir permeability enhancement by controllable shock waves in Baode Coal Mine 8# coal seam[J]. Safety in Coal Mines,2019,50(10):14-17.

[19] 郭智栋,曾雯婷,方惠军,等. 重复脉冲强冲击波技术在煤储层改造中的初步应用[J]. 中国石油勘探,2019,24(3):397-402. GUO Zhidong,ZENG Wenting,FANG Huijun,et al. Initial application of intense repeated pulse wave for stimulating CBM reservoirs[J]. China Petroleum Exploration,2019,24(3):397-402.

[20] 王向东,李文刚. 吉宁煤矿可控冲击波增透技术应用分析[J]. 山西焦煤科技,2019(2):4-7. WANG Xiangdong,LI Wengang. Application analysis of controlled shock wave penetration enhancement technology in Jining Coal Mine[J]. Shanxi Coking Coal Science & Technology,2019(2):4-7.

[21] 苏士龙. 坚硬厚煤层可控冲击波增透技术应用[J]. 煤炭工程,2019,52(9):71-75. SU Shilong. Application of controllable shock wave for permeability enhancement in hard thick coal seam[J]. Coal Engineering,2019,52(9):71-75.

[22] 王喆. 可控冲击波解堵增透技术在延川南煤层气田中的应用[J]. 油气藏评价与开发,2020,10(4):87-92. WANG Zhe. Application of controllable shock wave plugging removal and permeability improvement technology in CBM gas field of southern Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):87-92.

[23] DROGHEI R,SALUSTI E. A comparison of a fractional derivative model with an empirical model for non-linear shock waves in swelling shales[J]. Journal of Petroleum Science and Engineering,2015,125:181-188.

[24] 崔晓杰. 等离子脉冲谐振压裂技术[J]. 石油钻探技术,2015(4):82. CUI Xiaojie. Plasma pulse resonance fracturing technology[J]. Petroleum Drilling Techniques,2015(4):82.

[25] 付荣耀,孙鹞鸿,樊爱龙,等. 高压电脉冲页岩气开采中的压裂实验研究[J]. 强激光与粒子束,2016,28(7):1-5. FU Rongyao,SUN Yaohong,FAN Ailong,et al. Research of rock fracturing based on high voltage pulse in shale gas drilling[J]. High Power Laser and Particle Beams,2016,28(7):1-5.

[26] 闫发志. 基于电破碎效应的脉冲致裂煤体增渗实验研究[D]. 徐州:中国矿业大学,2017. YAN Fazhi. Experimental study on pulses induced fracturing and permeability enhancing of coal blocks based on the electrical fragmentation effect[D]. Xuzhou:China University of Mining and Technology,2017.

[27] FEI Ren,LEI Ge,THOMAS E R,et al. Permeability enhancement of coal by chemical-free fracturing using high-voltage electrohydraulic discharge[J]. Journal of Natural Gas Science and Engineering,2018,57:1-10.

[28] 王涛. 金属丝电爆炸对岩石损伤的数值模拟研究[D]. 北京:中国石油大学(北京),2018. WANG Tao. Numerical simulation of damage of rock caused by electrical explosion of wire[D]. Beijing:China University of Petroleum(Beijing),2018.

[29] 卞德存. 静水压下脉冲放电冲击波特性及其岩体致裂研究[D]. 太原:太原理工大学,2018. BIAN Decun. Research on the shock wave characteristics of pulsed discharge under hydrostatic pressure and its fracturing effect on rock mass[D]:Taiyuan:Taiyuan University of Technology,2018.

[30] FEI Ren,LEI Ge,VITALIY S,et al. Characterisation and evaluation of shock wave generation in water conditions for coal fracturing[J]. Journal of Natural Gas Science and Engineering,2019,66:255-264.

[31] FEI Ren,LEI Ge,ARASH A,et al. Gas storage potential and electrohydraulic discharge(EHD) stimulation of coal seam interburden from the Surat Basin[J]. International Journal of Coal Geology,2019,208:24-36.

[32] 秦爽,赵金昌,卞德存. 水中高压脉冲放电致裂岩体实验研究[J]. 爆破,2020,37(1):94-101. QIN Shuang,ZHAO Jinchang,BIAN Decun. Study on fractured rock mass caused by high pressure pulse discharge in water[J]. Blasting,2020,37(1):94-101.

[33] 张辉,蔡志翔,陈安明,等. 液相放电等离子体破岩室内实验与破岩机理[J]. 石油学报,2020,41(5):615-628. ZHANG Hui,CAI Zhixiang,CHEN Anming,et al. Experiments and mechanism of rock breaking by the plasma shock wave generated by underwater discharge[J]. Acta Petrolei Sinica,2020,41(5):615-628.

[34] 聂玉昕. 中国大百科全书74卷,(第二版):物理学词条:能量[M]. 北京:中国大百科全书出版社,2009:50. NIE Yuxin. Encyclopedia of China,74 volumes, The second edition,Physics entry:Energy[M]. Beijing:Encyclopedia of China Publishing House,2009:50.

[35] 秦勇,邱爱慈,张永民,等. 高聚能重复脉冲强冲击波煤层增渗新技术基础[R]. 成都:国家自然科学基金重点项目结题验收会议,2018-05-28. QIN Yong,QIU Aici,ZHANG Yongmin,et al. New technology foundation of high-energy repetitive pulse strong shock wave coal seam seepage enhancement[R]. Chengdu:Final Acceptance Meeting for Key Projects of National Natural Science Foundation of China,2018-05-28.

[36] QIN Yong,FU Xuehai,WU Caifang,et al. Self-adjusted elastic action and its CBM pool-forming effect of the high rank coal reservoir[J]. Science Bulletin,2005,50(1):99-103.

[37] 秦勇,傅雪海,韦重韬,等. 煤层气成藏动力条件及其控藏效应[M]. 北京:科学出版社,2012. QIN Yong,FU Xuehai,WEI Chongtao,et al. Dynamic conditions of coalbed methane accumulation and its controlling effect[M]. Beijing:Science Press,2012.

[38] 曾雄飞. 大油气田的勘探方向与冲击波理论[J]. 广东科技,2009(2):30-34. ZENG Xiongfei. Exploration direction and shock wave theory of large oil and gas fields[J]. Guangdong Science and Technology,2019(2):30-34.

[39] LI Shihai,ZHAO Manhong,WANG Yuannian,et al. A new numerical method for dem-block and particle model[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):436.

[40] FENG Chun,LI Shihai,LIU Xiaoyu,et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engineering,2014,6(1):26-35.

[41] 冯春,李世海,周东,等. 爆炸载荷作用下岩石损伤破裂过程的数值分析[J]. 岩土工程学报,2014,36(7):1262-1270. FENG Chun,LI Shihai,ZHOU Dong,et al. Numerical analysis of damage and crack process of rock under explosive loading[J]. Chinese Journal of Geotechnical Engineering,2014,36(7):1262-1270.

[42] 万曦超. 油气井固井水泥环力学研究[D]. 成都:西南石油大学,2006. WAN Xichao. Research on cement ring mechanics of oil and gas well cementing[D]. Chengdu:Southwest Petroleum University,2006.

[43] 杨智光. 固井封固理论与应用技术[D]. 大庆:大庆石油学院,2007. YANG Zhiguang. Theory on cementing & channeling resisting and application technology[D]. Daqing:Daqing Petroleum Institute,2007.

[44] 李勇,刘硕琼,王兆会. 水泥环厚度及力学参数对其应力的影响[J]. 石油钻采工艺,2010,32(4):37-40.LI Yong,LIU Shuoqiong,WANG Zhaohui. Effect of cement thickness and its mechanical parameters on cement stress[J]. Oil Drilling & Production Technology,2010,32(4):37-40.

[45] 练章华,沙磊,陈世春,等. 岩石力学性能实验与水泥环胶结强度评价[J]. 钻采工艺,2011,34(1):101-103. LIAN Zhanghua,SHA Lei,CHEN Shichun,et al. Rock mechanical performance experiment and cement ring bonding strength evaluation[J]. Drilling & Production Technology,2011,34(1):101-103.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.