•  
  •  
 

Coal Geology & Exploration

Abstract

In order to deeply analyze the indication of oil shale development characteristics on paleoenvironments and provide theoretical guidance for oil shale resource evaluation, the organic geochemistry and elemental geochemistry characteristics of the Neogene Zhangcun Formation oil shale in the central part of the Qinshui basin were analyzed by Rock-Eval and TOC and the paleoclimate and paleogeographic environments of the depositional period were discussed as well. The results show that the oil shale of Zhangcun Formation has the low oil content which Tar=4.15%, higher hydrocarbon potential, kerogen is of sapropel type(I1), which has relatively shallow burial depth. The element enrichment coefficients indexes indicated that the source of organic matters are a mixed source, but productivity of lakes provided major material for oil shale. The climate was warm and humid during the depositional period, and the water in the basin was gradually desalted from salt lake, while the oil shale was formed in an anaerobic and deep lake environment with weak stratification. The geochemical characteristics of oil shale are well coupled with the palaeoclimate and palaeogeographical environments.

Keywords

oil shale, Rock-Eval, geochemistry, palaeoenvironment, element enrichment coefficients indexes

DOI

10.3969/j.issn.1001-1986.2020.06.002

Reference

[1] 陈昕. 两淮煤矿采区地震勘探技术发展述评[J]. 中国煤田地质,2007,19(5):58-61. CHEN Xin. Review on the development of seismic exploration technology in Lianghuai coal mining area[J]. China Coal Geology,2007,19(5):58-61.

[2] 方良才,赵伟,徐羽中,等. 淮南煤田三维地震勘探技术应用进展[J]. 中国煤炭地质,2010,22(8):73-82. FANG Liangcai,ZHAO Wei,XU Yuzhong,et al. Application progress of 3D seismic exploration technology in Huainan coal field[J]. Coal Geology of China,2010,22(8):73-82.

[3] 王秀荣. 煤矿采区三维地震资料二次精细处理技术研究[J]. 中国资源综合利用,2018,36(1):192-196. WANG Xiurong. Research on secondary fine processing technology of 3D seismic data in coal mining area[J]. China Resources Comprehensive Utilization,2018,36(1):192-196.

[4] 杨臣明. 煤矿采区高精度三维地震勘探技术应用研究[J]. 能源与环保,2017,39(11):238-241. YANG Chenming. Application research of high-precision 3D seismic exploration technology in coal mining area[J]. Energy and Environmental Protection,2017,39(11):238-241.

[5] 崔庆辉,尚新民,滕厚华,等. 高密度三维地震观测系统设计技术与应用[J]. 石油物探,2020,59(1):12-22. CUI Qinghui,SHANG Xinmin,TENG Houhua,et al. Design of a high density three dimensional seismic geometry and its application[J]. Geophysical Prospecting for Petroleum,2020,59(1):12-22.

[6] 叶树刚. 高密度三维地震勘探观测系统设计方法研究[J]. 山东煤炭科技,2017(7):165-166. YE Shugang. Research on design method of high-density three-dimensional seismic exploration observation system[J]. Shandong Coal Science and Technology,2017(7):165-166.

[7] 田忠斌. 高精度三维地震勘探关键技术研究及应用[J]. 中国煤炭地质,2010,22(3):44-49. TIAN Zhongbin. Research and application of key technologies for high-precision 3D seismic exploration[J]. China Coal Geology,2010,22(3):44-49.

[8] 张颖. 三维地震叠前时间偏移处理技术应用与展望[J]. 石油勘探与开发,2006,33(5):536-541. ZHANG Ying. Application and prospect of 3D seismic pre-stack time migration processing technology[J]. Petroleum Exploration and Development,2006,33(5):536-541.

[9] 赵立明,崔若飞. 全数字高密度三维地震勘探在煤田精细构造解释中的应用[J]. 地球物理学进展,2014,29(5):2332-2336. ZHAO Liming,CUI Ruofei. Application of full digital high-density 3D seismic exploration in fine structure interpretation of coal fields[J]. Progress in Geophysics,2014,29(5):2332-2336.

[10] 宁宏晓,唐东磊,皮红梅,等. 国内陆上"两宽一高"地震勘探技术及发展[J]. 石油物探,2019,58(5):645-653. NING Hongxiao,TANG Donglei,PI Hongmei,et al. The technology and development of "WBH" seismic exploration in land,China[J]. Geophysical Prospecting for Petroleum,2019,2019,58(5):645-653.

[11] 郭占峰,程增庆,郭欣,等. 矿区全数字高密度三维地震勘探技术的应用[J]. 现代矿业,2016,32(11):176-177. GUO Zhanfeng,CHENG Zengqing,GUO Xin,et al. Application of full digital high-density 3D seismic exploration technology in mining area[J]. Modern Mining,2016,32(11):176-177.

[12] 程彦. 多属性融合技术在三维地震资料解释中的应用[J]. 中国煤炭地质,2016,28(10):67-70. CHENG Yan. Application of multi-attribute fusion technology in 3D seismic data interpretation[J]. China Coal Geology,2016,28(10):67-70.

[13] 吴永辉,虞永征,吴访. 煤矿三维地震小断层精细解释方法与技术[J]. 工程地球物理学报,2020,17(2):177-183. WU Yonghui,YU Yongzheng,WU Fang. Fine interpretation methods and techniques for small faults in 3D seismic in coal mines[J]. Journal of Engineering Geophysics,2020,17(2):177-183.

[14] 蒋法文,黄晖,张振生,等. 高精度三维地震勘探技术在煤田安全生产中的应用[J]. 中国煤炭地质,2014,26(2):60-64. JIANG Fawen,HUANG Hui,ZHANG Zhensheng,et al. Application of high-precision three-dimensional seismic exploration technology in coal field safety production[J]. China Coal Geology,2014,26(2):60-64.

[15] 程建远,赵伟,曹丁涛,等. 煤矿采区三维地震探采对比效果的分析与思考[J]. 中国煤炭地质,2010,22(8):67-72. CHENG Jianyuan,ZHAO Wei,CAO Dingtao,et al. Analysis and thinking on the comparative effect of 3D seismic exploration and mining in coal mining area[J]. China Coal Geology,2010,22(8):67-72.

[16] 何召全,赵伟,黄晖,等. 淮南矿区岩溶陷落柱三维地震响应地质认识[C]//中国煤炭学会矿井地质专业委员会2017年学术论坛论文集. 2017:224-232. HE Zhaoquan,ZHAO Wei,HUANG Hui,et al. Geological understanding of 3D seismic response of karst collapse column in Huainan mining area[C]//Proceedings of 2017 Academic Forum of Coal Mine Geology Professional Committee of China Coal Society. 2017:224-232.

[17] 林承灏. 张集矿A组煤层三维地震资料精细解释技术及应用[D]. 淮南:安徽理工大学,2013. LIN Chenghao. Fine interpretation technology and application of 3D seismic data for coal seam of Group A in Zhangji Mine[D]. Huainan:Anhui University of Science and Technology,2013.

[18] 王瑞杰. 三维地震波形差异属性分析在预测岩溶裂隙发育带中应用[J]. 中国煤炭地质,2018,30(1):72-75. WANG Ruijie. Application of 3D seismic waveform difference attribute analysis in prediction of karst fracture development zone[J]. China Coal Geology,2018,30(1):72-75.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.