•  
  •  
 

Coal Geology & Exploration

Abstract

In order to increase the degree of production of CBM development blocks, when the production of a single well enters a decline period, the development plan needs to be adjusted, and the production increase and stability can be achieved through the measures such as layer adjustment or layer compensation. In terms of time, it is believed that the main coal seam should be developed first when it is put into production. After the decline period, the secondary main coal seam should be supplemented and combined; in space, combined with the development dynamics, the analytic hierarchy process is used to determine the main control indicators that affect the output and their weights, and then calculate the difference of each index for different coal seams, and after normalization, the distribution characteristics of the main coal seams in the well area are finely determined; the remaining reserves distribution characteristics are obtained by gridding geological reserves and produced gas. Finally, through the superposition of the main coal seam distribution and the corresponding remaining reserves distribution, the best development sequence is determined; and the fracturing and drainage technology is optimized for different development sequences. The proposed three-dimensional development method in the old CBM well pattern has achieved good development results in the Zhengcun well area of the Fanzhuang block, and finally realized the long-term stable production of the block and improved the recovery rate. For blocks with multiple coal seams, it is of significance for promotion.

Keywords

coalbed methane, AHP, three-dimensional development, interlayer interference, Zhengcun well area

DOI

10.3969/j.issn.1001-1986.2020.06.009

Reference

[1] 刘运超,张利转. 岩浆岩侵入地震识别及解释方法分析[J]. 煤炭技术,2010,29(3):171-173. LIU Yunchao,ZHANG Lizhuan. Mogmatic rock intrusion seismic identification and interpretation method analysis[J]. Coal Technology,2010,29(3):171-173.

[2] 杨孟达. 煤矿地质学[M]. 北京:煤炭工业出版社,2006. YANG Mengda. Coal Mine Geology[M]. Beijing:China Coal Industry Publishing House,2006.

[3] 张文永,徐胜平,蔡学斌. 卧龙湖煤矿岩浆侵入规律及其对煤层、煤质、瓦斯的影响[J]. 安徽地质,2005,15(1):25-28. ZHANG Wenyong,XU Shengping,CAI Xuebin. Magamatic intrusion law and its effect on coal seam,coal quality and gas in the WOLONGHU coal mine[J]. Geology of Anhui,2005,15(1):25-28.

[4] 王瑞贞,白旭明,王金宽,等. 朝克乌拉凹陷火成岩覆盖区地震勘探方法研究[J]. 石油物探,2020,59(3):382-395. WANG Ruizhen,BAI Xuming,WANG Jinkuan,et al. Seismic exploration methods for igneous rock-overlain regions in the Chaokewula Sag[J]. Geophysical Prospecting for Petroleum,2020,59(3):382-395.

[5] 杨梓懂. 吕凤矿区岩浆侵入体对煤层煤质的影响[J]. 能源与环境,2012(2):67-69. YANG Zidong. Influence of Magma Intrusion on Coal Seam and Coal Quality in Lufeng Mining Area[J]. Energy and Environment,2012(2):67-69.

[6] 谭笑林,王兵. 云驾岭矿扩大区岩浆岩侵入特征及对煤层煤质的影响[J]. 山东煤炭科技,2008(6):136-137. TIAN Xiaolin,WANG Bing. Features of magma rock invading and its influence to coal seam quality in Yunjialing coal mine expending area[J]. Shandong Coal Science and Technology,2008(6):136-137.

[7] 刘福胜,徐培武,郑荣华,等. 邯邢煤田岩浆侵入及对煤层煤质的影响[J]. 中国煤田地质,2007,19(5):22-23. LIU Fusheng,XU Peiwu,ZHENG Ronghua,et al. Magmatic intrusion and its impact to coal seam and coal quality in Hanxing coal-field[J]. Coal Geology of China,2007,19(5):22-23.

[8] 朱红娟. 岩浆岩侵入体三维地震解释方法及应用研究[D]. 西安:西安科技大学,2005. ZHU Hongjuan. The study of interpretation methods 3D seismic and its application on magmatic intrusive mass[D]. Xi'an:Xi'an University of Science and Technology,2005.

[9] 李江,智敏,朱书阶. 岩浆岩地震波阻抗反演与厚度预测[J]. 物探与化探,2020,44(5):1233-1238. LI Jiang,ZHI Min,ZHU Shujie. The fictitious impedance inversion and thickness prediction of magmatic rock[J]. Geophysical and Geochemical Exploration,2020,44(5):1233-1238.

[10] 谢庆宾,韩德馨,朱筱敏,等. 三塘湖盆地火成岩储集空间类型及特征[J]. 石油勘探与开发,2002,29(1):84-86. XIE Qingbin,HAN Dexin,ZHU Xiaomin,et al. Reservoir space feature and evolution of the volcanic rocks in the Santanghu basin[J]. Petroleum Exploration and Development,2002,29(1):84-86.

[11] 罗静兰,邵红梅,张成立. 火山岩油气藏研究方法与勘探技术综述[J]. 石油学报,2003,24(1):31-38. LUO Jinglan,SHAO Hongmei,ZHANG Chengli. Summary of research methods and exploration technologies for volcanic reservoirs[J]. Acta Petrolei Sinica,2003,24(1):31-38.

[12] 黄布宙,潘保芝. 松辽盆地北部深层火成岩测井响应特征及岩性划分[J]. 石油物探,2001,40(3):42-47. HUANG Buzhou,PAN Baozhi. The log characteristics of deep igneous rocks and lithology determination in the northern Songliao Basin[J]. Geophysical Prospecting for Petroleum,2001,40(3):42-47.

[13] 郭秀娟,潘保芝,吴海波,等. 徐家围子断陷火成岩裂缝性地层的测井特征与识别[J]. 石油物探,2004,43(3):301-305. GUO Xiujuan, PAN Baozhi, WU Haibo,et al. Features and identification of fractured igneous reservoirs on well logging data:A case study at Xujiaweizi Fault Depression[J]. Geophysical Prospecting for Petroleum,2004,43(3):301-305.

[14] 许风光,邓少贵,范宜仁,等. 火成岩储层测井评价进展综述[J]. 勘探地球物理进展,2006,29(4):239-243. XU Fengguang, DENG Shaogui,FAN Yiren,et al. Review on logging evaluation of igneous reservoir[J]. Progress in Exploration Geophysics,2006,29(4):239-243.

[15] 王家林,王一新,万明浩. 石油重磁解释[M]. 北京:石油工业出版社,1991. WANG Jialin,WANG Yixin,WAN Minghao. Petroleum gravity and magnetic interpretation[M]. Beijing:Petroleum Industry Press,1991.

[16] 邓荣来,李庆浩,宋桂桥,等. 重磁联合反演及重磁与MT综合解释巴彦浩特盆地火成岩[J]. 石油物探,2002,41(2):222-225. DENG Ronglai,LI Qinghao,SONG Guiqiao,et al. Investigation on distribution of igneous rock in Bayabhaote Basin with joint inversion and integrated interpretation of gravity, magnetic and MT data[J]. Geophysical Prospecting for Petroleum,2002,41(2):222-225.

[17] 杨辉,张研,刘晓,等. 松辽盆地北部徐家围子断陷航磁异常特征及油气地质意义[J]. 石油地球物理勘探,2006,41(1):97-99. YANG Hui,ZHANG Yan,LIU Xiao,et al. Aeromagnetic anomalous feature of Xujiaweizi Fault Depression in north part of Songliao Basin and geologic meaning for oil/gas exploration[J]. Oil Geophysical Pospecting,2006,41(1):97-99.

[18] 赵国连,张岳桥. 大庆火山岩地震反射特征与综合预测技术[J]. 石油勘探与开发,2002,29(5):44-46. ZHAO Guolian,ZHANG Yueqiao. Siesmic reflection character of volcanic reservoir of Daqing and the comprehensive prediction technology[J]. Petroleum Exploration and Development,2002,29(5):44-46.

[19] 李明,邹才能,刘晓,等. 松辽盆地北部深层火山岩气藏识别与预测技术[J]. 石油地球物理勘探,2002,37(5):477-484. LI Ming,ZOU Caineng,LIU Xiao,et al. Identifying and predicting technology of deep volcanics gas reservoir in north of Songliao bas in[J]. Oil Geophysical Pospecting,2002,37(5):477-484.

[20] 高印军,郭春东,余忠,等. 综合解释技术在孔南地区火成岩油藏研究中的应用[J]. 石油勘探与开发,2000,27(3):81-83. GAO Yinjun,GUO Chundong,YU Zhong,et al. Applying comprehensive interpretation technique to the study of igneous rock reservoir in Kongnan area[J]. Petroleum Exploration and Development,2000,27(3):81-83.

[21] 崔勇,栾瑞乐,赵澄林. 辽河油田欧利坨子地区火山岩储集层特征及有利储集层预测[J]. 石油勘探与开发,2000,27(5):47-49. CUI Yong,LUAN Ruile,ZHAO Chenglin. Volcanic reservoir characteristics and favorable reservoir prediction in Oulituozi area of Liaohe Oilfield[J]. Petroleum Exploration and Development,2000,27(5):47-49.

[22] 吕希学,肖焕钦,刘惠民,等. 根据地震勘查信息预测火成岩储集体[J]. 浙江大学学报(工学版),2003,37(2):123-127. LYU Xixue,XIAO Huanqin,LIU Huimin,et al. Prediction of the igneous rock reservoir by using multi-seismic information[J]. Journal of Zhejiang University(Engineering Science),2003,37(2):123-127.

[23] 吴海波,董守华,黄亚平,等. 基于地震属性的煤层火成岩侵入预测[J]. 地球物理学进展,2015,30(3):1376-1381. WU Haibo,DONG Shouhua,HUANG Yaping,et al. Prediction of coal seam igneous intrusion based on seismic attributes[J]. Progress in Geophysics,2015,30(3):1376-1381.

[24] 李仁海,崔若飞,毛欣荣,等. 利用岩性解释方法圈定岩浆岩侵入煤层范围[J]. 地球物理学进展,2008,23(1):242-248. LI Renhai,CUI Ruofei,MAO Xinrong,et al. Determination of magnetic rock intrusion using lithology interpretation method[J]. Progress in Geophysics,2008,23(1):242-248.

[25] 金法礼,冀明君,张培础. 淮北煤田永固井田岩浆岩侵入特征及煤厚预测[J]. 中国矿业大学学报,1998,27(2):209-212. JIN Fali,JI Mingjun,ZHANG Peichu. Magmatic rock intrusive characteristics and coal thickness prediction in Yonggu minefield of Huaibei coalfield[J]. Journal of China University of Mining & Technology,1998,27(2):209-212.

[26] 乐昌硕. 高等学校教材岩石学[M]. 北京:地质出版社,1984. LE Changshuo. Teaching materials of colleges and Universities Petrology[M]. Beijing:Geological Publishing House,1984.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.