•  
  •  
 

Coal Geology & Exploration

Abstract

In order to research the change law of the temperature field of the frozen wall of double-circle pipes, an auxiliary shaft in Huainan coalmine was taken as the research object, the FLAC3D software was used to numerically simulate the formation process of the temperature field of the frozen wall of double-circle pipes and the influence of different factors on average temperature of frozen wall based on the relevant geological parameters. The research results show that temperature of the soil in the double-circle pipes is the lowest, and temperature on both sides increases gradually, the interval between frozen holes is smaller, the time of circulation is earlier, and the closed unfrozen pressurized water tank is formed after the inner and outer ring pipes are in contact, which is unfavorable to the frozen wall, the frozen front face in the inner side expands faster than that in the outer side; average temperature of frozen wall of double-circle pipes decreases with freezing time in a logarithmic relationship, the effective thickness increases obviously after the intersection of the inner and outer rings, and increases approximately logarithmically with freezing time; temperature field curve of main and interface of double-circle pipes changes gradually from saddle-horse shape to trapezoidal distribution with freezing time, interface temperature field expansion speed is greater than main surface temperature field; the initial temperature, brine temperature and thermal conductivity of the soil have a great influence on the average temperature of frozen wall, the lower initial temperature and brine temperature, the higher the thermal conductivity is, the lower the average temperature of frozen wall is. The research results provide reference for the design and construction of the related freezing project.

Keywords

double-circle pipes, frozen wall temperature field, numerical simulation, average temperature, influence factor, Huainan

DOI

10.3969/j.issn.1001-1986.2020.03.024

Reference

[1] 靳巍巍,陈有亮. 隧道冻结法施工三维有限元温度场及性状分析[J]. 地下空间与工程学报,2007,3(5):918-922. JIN Weiwei,CHEN Youliang. Three-dimensional temperature field and behavior analysis of tunnels constructed by artificial freezing method[J]. Chinese Journal of Underground Space and Engineering,2007,3(5):918-922.

[2] 蒋斌松,王金鸽,周国庆. 单管冻结温度场解析计算[J]. 中国矿业大学学报,2009,38(4):463-466. JIANG Binsong,WANG Jinge,ZHOU Guoqing. Analytical calculation of temperature field around a single freezing pipe[J]. Journal of China University of Mining and Technology,2009,38(4):463-466.

[3] 周晓敏,苏立凡,贺长俊,等. 北京地铁隧道水平冻结法施工[J]. 岩土工程学报,1999,21(3):319-322. ZHOU Xiaomin,SU Lifan,HE Changjun,et al. Horizontal ground freezing method applied to tunneling of Beijing underground railway system[J]. Chinese Journal of Geotechnical Engineering,1999,21(3):319-322.

[4] 宋英杰,胡向东,陈雷. 双排管冻结土帷幕厚度的测点位置敏感度分析[J]. 地下空间与工程学报,2013,9(3):535-540. SONG Yingjie,HU Xiangdong,CHEN Lei. Sensitivity analysis on position of temperature measuring points of bakholdin solution in double-row-pipe freezing[J]. Chinese Journal of Underground Space and Engineering,2013,9(3):535-540.

[5] 盛天宝,魏世义. 特厚黏土层多圈孔冻结壁温度场实测研究与工程应用[J]. 岩土工程学报,2012,34(8):1516-1521. SHENG Tianbao,WEI Shiyi. Measurement and engineering application of temperature field multiple-ring hole frozen wall in extra-thick clay strata[J]. Chinese Journal of Geotechnical Engineering,2012,34(8):1516-1521.

[6] 林斌,王鹏,侯海杰,等. 深厚黏土层多圈管冻结壁温度场发展规律[J]. 煤田地质与勘探,2018,46(4):135-141. LIN Bin,WANG Peng,HOU Haijie,et al. Development law of the multi-loop tube freezing temperature field in deep thick clay layer[J]. Coal Geology & Exploration,2018,46(4):135-141.

[7] 汪仁和,曹荣斌. 双排管冻结下冻结壁温度场形成特征的数值分析[J]. 冰川冻土,2002,24(2):181-185. WANG Renhe,CAO Rongbin. Numerical analysis of the temperature field features in the frozen wall with double rows of freezing pipes[J]. Journal of Glaciology and Geocryology,2002,24(2):181-185.

[8] 胡向东,赵飞,佘思源,等. 直线双排管冻结壁平均温度的等效抛物弓形模型[J]. 煤炭学报,2012,37(1):28-32. HU Xiangdong,ZHAO Fei,SHE Siyuan,et al. Equivalent parabolic arch method of average temperature calculation for straight double-row-pipe frozen soil wall[J]. Journal of China Coal Society,2012,37(1):28-32.

[9] 胡向东,方涛,韩延广. 环形双圈管冻结稳态温度场广义解析解[J]. 煤炭学报,2017,42(9):2287-2294. HU Xiangdong,FANG Tao,HAN Yanguang. Generalized analytical solution to steady-state temperature field of double-circle-piped freezing[J]. Journal of China Coal Society,2017,42(9):2287-2294.

[10] 曹伟,盛煜,吴吉春,等. 煤矿井工开采对冻土环境的影响分析[J]. 煤田地质与勘探,2016,44(4):98-104. CAO Wei,SHENG Yu,WU Jichun,et al. Impact of underground mining on permafrost environment[J]. Coal Geology & Exploration,2016,44(4):98-104.

[11] 肖朝昀,胡向东,张庆贺. 多排管局部冻结冻土壁温度场特性[J]. 岩石力学与工程学报,2007,26(增刊1):2694-2700. XIAO Zhaoyun,HU Xiangdong,ZHANG Qinghe. Characters of temperature field in frozen soil wall with multi-row freeze-tubes and limited depth freezing[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(S1):2694-2700.

[12] 盛天宝. 特厚黏土层冻结压力研究与应用[J]. 煤炭学报,2010,35(4):571-574. SHENG Tianbao. Research and application on freezing pressure of extra-thick clay layer[J]. Journal of China Coal Society,2010,35(4):571-574.

[13] 杜猛,陈亚妮,陈孝文,等. 深厚钙质黏土层冻结特征与冻结温度场数值模拟[J]. 煤田地质与勘探,2014,42(5):72-76.DU Meng,CHEN Yani,CHEN Xiaowen,et al. Freezing characteristics of deep and thick calcareous clay layer and numerical simulation of freezing temperature field[J]. Coal Geology & Exploration,2014,42(5):72-76.

[14] 李栋伟,汪仁和,胡璞. 多圈管冻结瞬态温度场有限元数值分析[J]. 煤田地质与勘探,2007,35(2):38-41. LI Dongwei,WANG Renhe,HU Pu. FEM analysis of transient freezing temperature field of frozen multi-wall tube[J]. Coal Geology & Exploration,2007,35(2):38-41.

[15] 陈军浩,李栋伟. 多圈管冻结温度场特征分析及工程应用[J]. 冰川冻土,2016,38(6):1568-1574. CHEN Junhao,LI Dongwei. Temperature field frozen with multi-circle pipes in shaft sinking:Feature analysis and engineering application[J]. Journal of Glaciology and Geocryology,2016,38(6):1568-1574.

[16] 陈军浩,夏红兵,李栋伟. 多圈管冻结壁温度场发展及冻结管偏斜影响[J]. 中山大学学报(自然科学版),2016,55(4):56-62. CHEN Junhao,XIA Hongbing,LI Dongwei. Multi-circle-tube frozen wall temperature field development and deviation pipes influence[J]. Acta Scientiarum Naturalium Universitatis Suny Atseni,2016,55(4):56-62.

[17] 汪仁和. 人工多圈管冻结地层的水热力耦合研究及其冻结壁计算[D]. 合肥:中国科学技术大学,2005. WANG Renhe. Hydro-thermal coupling study of artificial multi-turn tube frozen formation and calculation of frozen wall[D]. Hefei:University of Science and Technology of China,2005.

[18] 杨青,荣传新. 深部膨胀性黏土层冻结温度场与冻胀力形成规律研究[J]. 冰川冻土,2019,DOI:10.7522/j.issn.1000-0240. 2019.1107. YANG Qing,RONG Chuanxin. Study on the formation law of frost heave force under the freezing temperature field of deep expansive clay layer[J]. Journal of Glaciology and Geocryology,2019,DOI:10.7522/j.issn.1000-0240.2019.1107.

[19] 王鹏,林斌,侯海杰,等. 冻结管布置形式对冻结壁温度场发展规律影响研究[J]. 煤炭科学技术,2019,47(12):38-44. WANG Peng,LIN Bin,HOU Haijie,et al. Study on influence of freezing tubes layout on development law of temperature field of freezing wall[J]. Coal Science and Technology,2019,47(12):38-44.

[20] 吴雨薇,李春芳,胡俊,等. 新型管幕冻结法温度场影响参数分析[J]. 煤田地质与勘探,2019,47(1):155-161. WU Yuwei,LI Chunfang,HU Jun,et al. Analysis of influencing parameters of temperature field in a new pipe-roofing freezing method[J]. Coal Geology & Exploration,2019,47(1):155-161.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.