•  
  •  
 

Coal Geology & Exploration

Abstract

In order to explore better the variation law of thermal conductivity of geomaterials, and reduce the thermal damage caused by the problem, according to the structural characteristics of the cemented particles, combined with the effective medium thermal conductivity model and the surface contact thermal conductivity model, the effective thermal conductivity calculation model suitable for the geotechnical cemented particulate material was constructed, and the state of the particulate matter and the cementitious matrix were considered. The transient hot wire method was applied to test the thermal conductivity of the experimental test block, and the predicted values were compared with the measured results and the calculated results of the Maxwell-Eucken model. It was found that with the increase of porosity, the calculated values of the thermal conductivity of both models decrease gradually. The results of the four sets of test data show that the average digit of the calculated thermal conductivity of the Maxwell-Eucken model is 0.171 72 W/(m·K), and the average figure of the calculated model of the optimized thermal conductivity is 0.171 39 W/(m·K). It indicates that the conclusion of the optimized thermal conductivity calculation model is closer tothe actual average test result(0.169 22 W/(m·K)), which can better predict the thermal conductivity of cemented particulate matter.

Keywords

cemented particles, surface contact, thermal conductivity, thermal conductivity model, porosity

DOI

10.3969/j.issn.1001-1986.2019.06.023

Reference

[1] UTILI S,NOVA R. DEM analysis of bonded granular geo-materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(17):1997-2031.

[2] 张楠,夏胜全,侯新宇,等. 土热传导系数及模型的研究现状和展望[J]. 岩土力学,2016,37(6):1550-1562. ZHANG Nan,XIA Shengquan,HOU Xinyu,et al. Review on soil thermal conductivity and prediction model[J]. Rock and Soil Mechanics,2016,37(6):1550-1562.

[3] 付文强,高辉,薛征欣,等. 多孔材料有效导热系数的实验和模型研究[J]. 中国测试,2016,42(5):124-130. FU Wenqiang,GAO Hui,XUE Zhengxin,et al. Experimental measurement and calculation of thermal conductivity of po-rous material[J]. China Measurement & Test,2016,42(5):124-130.

[4] 王莹莹,姜超,刘艳峰,等. 含湿建筑材料导热系数研究进展[J]. 西安建筑科技大学学报(自然科学版),2017,49(2):271-276. WANG Yingying,JIANG Chao,LIU Yanfeng,et al. Research progress on the thermal conductivity of moist building materials[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition),2017,49(2):271-276.

[5] 陈春,钱春香,许燕波. 基于最小热阻理论的混凝土导热系数计算模型[J]. 东南大学学报(自然科学版),2012,42(2):383-387. CHEN Chun,QIAN Chunxiang,XU Yanbo. Calculation model of thermal conductivity of concrete based on minimum thermal resistance theory[J]. Journal of Southeast University(Natural Science Edition),2012,42(2):383-387.

[6] 夏锦红,陈之祥,夏元友,等. 不同负温条件下冻土导热系数的理论模型和试验验证[J]. 工程力学,2018,35(5):109-117. XIA Jinhong,CHEN Zhixiang,XIA Yuanyou,et al. Theoretical model and experimental verification on thermal conductivity of frozen soil under different negative temperature conditions[J]. Engineering Mechanics,2018,35(5):109-117.

[7] 董其伍,刘琳琳,刘敏珊. 预测聚合物基复合材料导热系数方法研究进展[J]. 材料工程,2009(3):78-81. DONG Qiwu,LIU Linlin,LIU Minshan. Advancement of the prediction methods of effective thermal conductivity of polymer-based composites[J]. Journal of Materials Engineering,2009(3):78-81.

[8] 施明恒,樊荟. 多孔介质导热的分形模型[J]. 热科学与技术,2002(1):28-31. SHI Mingheng,FAN Hui. A fractal modal for evaluating heat conduction in porous media[J]. Journal of Thermal Science and Technology,2002(1):28-31.

[9] 张伟平,童菲,邢益善,等. 混凝土导热系数的试验研究与预测模型[J]. 建筑材料学报,2015,18(2):183-189. ZHANG Weiping,TONG Fei,XING Yishan,et al. Experimental study and prediction model of thermal conductivity of concrete[J]. Journal of Building Materials,2015,18(2):183-189.

[10] YU Fan,WEI Gaosheng,ZHANG Xinxin,et al. Two effective thermal conductivity models for porous media with hollow spherical agglomerates[J]. International Journal of Thermophysics,2006,27(1):293-303.

[11] 张赛. 多孔材料毛细孔收缩热质传递及分形特性研究[D]. 昆明:昆明理工大学,2015.

[12] 蒋明镜,刘静德. 结构性砂土胶结厚度分布特性试验研究[J]. 地下空间与工程学报,2016,12(2):362-368. JIANG Mingjing,LIU Jingde. Experimental and numerical research on bonding properties of structured sand[J]. Chinese Journal of Underground Space and Engineering,2016,12(2):362-368.

[13] 谷雨. 胶结量对球体颗粒胶结材料力学特性影响的试验研究[D]. 西安:西安理工大学,2018.

[14] 印森林,陈恭洋,陈玉琨,等. 砂砾岩储层孔隙结构复杂模态差异机制[J]. 西南石油大学学报(自然科学版),2019,41(1):1-17. YIN Senlin,CHEN Gongyang,CHEN Yukun,et al. Mechanism of complex modes of the pore structure of sandstone/conglomerate reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2019,41(1):1-17.

[15] 赵永川,刘洪磊,杨天鸿,等. 中生代砂岩细观结构对强度和能量耗散的影响[J]. 煤炭学报,2017,42(2):452-459. ZHAO Yongchuan,LIU Honglei,YANG Tianhong,et al. Effect of Mesozoic sandstone meso structure on strength and energy dissipation characteristic[J]. Journal of China Coal Society,2017,42(2):452-459.

[16] 阳富强,黄贤煜. 基于低温氮实验的硫化矿石吸附性能及其孔隙结构特征[J]. 中南大学学报(自然科学版),2017,48(8):2180-2186. YANG Fuqiang,HUANG Xianyu. Adsorption properties and pore structures of sulfide ores based on low temperatures nitrogen experiment[J]. Journal of Central South University(Science and Technology),2017,48(8):2180-2186.

[17] 孙国文,张丽娟. CT技术用于水泥基材料微观结构表征的国内外研究进展[J]. 混凝土,2015(12):8-12. SUN Guowen,ZHANG Lijuan. Research progress on computed tomography technology for micro structural studying in cement-based materials[J]. Concrete,2015(12):8-12.

[18] 许志,王依民,王勇. 运用分形方法预测石墨化碳泡沫方向导热系数[J]. 材料导报,2009,23(16):74-77. XU Zhi,WANG Yimin,WANG Yong. Prediction of the orientation thermal conductivity of carbon foam using fractal model[J]. Materials Review,2009,23(16):74-77.

[19] 龚伦伦. 基于发泡和固化法的硅酸盐无机外墙保温材料制备与性能研究[D]. 合肥:中国科学技术大学,2014.

[20] 陆勇. 高、低压下砂土剪切带及砂土-结构界面层力学行为演化研究[D]. 徐州:中国矿业大学,2014.

[21] 李守巨,范永思,张德岗,等. 岩土材料导热系数与孔隙率关系的数值模拟分析[J]. 岩土力学,2007,28(增刊1):244-248. LI Shouju,FAN Yongsi,ZHANG Degang,et al. Numerical simulation of relationship between thermal conductivity of geotechnical material and its porosity[J]. Rock and Soil Mechanics,2007,28(S1):244-248.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.