•  
  •  
 

Coal Geology & Exploration

Abstract

In order to investigate the mechanical properties and damage of sandstone under different uniaxial compression, the static uniaxial compression tests of five sandstones with different moisture content were carried out, and the physical and mechanical parameters were obtained. And the wave velocity of the sandstone samples with different moisture content were measured by ultrasonic detector. Then the sandstone was loaded to 80% peak intensity and then unloaded to 0. The acoustic wave velocity of sandstone was measured at this time. The damage was determined by acoustic wave method. The results show that the peak strength of sandstone under uniaxial compression and the elastic modulus decreases with the increase of moisture content, but the peak strain changes in the opposite direction; the total work and elastic energy decrease with the increase of moisture content, and the dissipation energy change is opposite with the moisture content. The effect of sandstone damage indicates that the wave velocity of the acoustic wave decreases with the increase of moisture content before the test. The wave velocity of the acoustic wave decreases with the increase of moisture content and the trend is slower than that before the test. The residual plastic deformation of sandstone increases gradually with the moisture content; The internal damage of sandstone increases with the increase of moisture content. The results of the study can provide a basis for on-site testing of rock damage.

Keywords

acoustic emission, uniaxial compression, moisture content, damage

DOI

10.3969/j.issn.1001-1986.2019.04.023

Reference

[1] KIM E,CHANGANI H. Effect of water saturation and loading rate on the mechanical properties of Red and Buff sandstones[J]. International Journal of Rock Mechanics & Mining Sciences,2016,88:23-28.

[2] 秦虎,黄滚,王维忠. 不同含水率煤岩受压变形破坏全过程声发射特征试验研究[J]. 岩石力学与工程学报,2012,31(6):1115-1120. QIN Hu,HUANG Gun,WANG Weizhong. Experimental study of acoustic emission characteristics of coal samples with different moisture contents in process of compression deformation and failure[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1115-1120.

[3] 吉育兵,杨伟峰,赵国荣. 脆性岩石单轴压缩条件下损伤机制分析[J]. 煤矿安全,2011,42(7):165-167. JI Yubing,YANG Weifeng,ZHAO Guorong. Damage mechanism of brittle rock under uniaxial compression[J]. Safety in Coal Mines,2011,42(7):165-167.

[4] 林大能,陈寿如. 循环冲击荷载作用下岩石损伤规律的试验研究[J]. 岩石力学与工程学报,2005,24(22):4094-4098. LIN Daneng,CHEN Shouru. Experimental study on damage evolution law of rock under cyclical impact loadings[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(22):4094-4098.

[5] 王超,袁旭朋,汪开旺. 煤和砂岩加载弹塑性损伤本构方程[J]. 煤田地质与勘探,2017,45(2):105-111. WANG Chao,YUAN Xupeng,WANG Kaiwang. Constitutive equation of loading-induced elastic-plastic damage of coal and sandstone[J]. Coal Geology & Exploration,2017,45(2):105-111.

[6] 王云飞,王立平,焦华喆,等. 不同围压下砂岩的变形力学特性与损伤机制[J]. 煤田地质与勘探,2015,43(4):63-68. WANG Yunfei,WANG Liping,JIAO Huazhe,et al. Mechanical characteristics of deformation and damage mechanism of sandstone under different confining pressure[J]. Coal Geology & Exploration,2015,43(4):63-68.

[7] 张国凯,李海波,夏祥,等. 岩石单轴压缩下能量与损伤演化规律研究[J]. 岩土力学,2015,36(增刊1):94-100. ZHANG Guokai,LI Haibo,XIA Xiang,et al. Research on energy and damage evolution of rock under uniaxial compression[J]. Rock and Soil Mechanics,2015,36(S1):94-100.

[8] 刘保县,赵宝云,姜永东. 单轴压缩煤岩变形损伤及声发射特性研究[J]. 地下空间与工程学报,2007,3(4):647-650. LIU Baoxian,ZHAO Baoyun,JIANG Yongdong. Study of deformation-damage and acoustic emission character of coal rock under uniaxial compression[J]. Chinese Journal of Underground Space and Engineering,2007,3(4):647-650.

[9] 罗福友,罗福龙,邓飞,等. 砂岩单轴压缩下声发射特征与损伤演化[J]. 中国钨业,2014,29(6):7-10. LUO Fuyou,LUO Fulong,DENG Fei,et al. Acoustic emission characteristics and damage evolution of sandstone under uniaxial compression condition[J]. China Tungsten Industry,2014,29(6):7-10.

[10] 苏承东,高保彬,南华,等. 不同应力路径下煤样变形破坏过程声发射特征的试验研究[J]. 岩石力学与工程学报,2008,28(4):757-766. SU Chengdong,GAO Baobin,NAN Hua,et al. Experimental study on acoustic emission characteristics during deformation and failure processes of coal samples under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering,2008,28(4):757-766.

[11] 宿辉,李长洪. 不同围压条件下花岗岩压缩破坏声发射特征细观数值模拟[J]. 北京科技大学学报,2011,33(11):1312-1318. SU Hui,LI Changhong. Mesoscopic numerical simulation of acoustic emission experiment in rock compression failure under different confining pressures[J]. Journal of University of Science and Technology Beijing,2011,33(11):1312-1318.

[12] 吴春,郭棋武,洪涛,等. 基于超声检测的软岩单轴流变损伤试验[J]. 煤田地质与勘探,2017,45(5):105-111. WU Chun,GUO Qiwu,HONG Tao,et al. Uniaxial rheological damage experiment of soft rock based on the ultrasonic testing[J]. Coal Geology & Exploration,2017,45(5):105-111.

[13] 赵明阶,徐蓉. 岩石损伤特性与强度的超声波速研究[J]. 岩土工程学报,2000,22(6):720-722. ZHAO Mingjie,XU Rong. The rock damage and strength study based on ultrasonic velocity[J]. Chinese Journal of Geotechnical Engineering,2000,22(6):720-722.

[14] 赵奎,金解放,王晓军,等. 岩石声速与其损伤及声发射关系研究[J]. 岩土力学,2007,28(10):2105-2109. ZHAO Kui,JIN Jiefang,WANG Xiaojun,et al. Study on rock damage and acoustic emission based on ultrasonic velocity test of rock specimen under uniaxial compression[J]. Rock and Soil Mechanics,2007,28(10):2105-2109.

[15] LU Aihong,HU Shanchao,LI Ming,et al. Impact of moisture content on the dynamic failure energy dissipation characteristics of sandstone[J]. Shock and Vibration,2019:1-10.

[16] 姚强岭,李学华,何利辉,等. 单轴压缩下含水砂岩强度损伤及声发射特征[J]. 采矿与安全工程学报,2013,30(5):717-722. YAO Qiangling,LI Xuehua,HE Lihui. Strength deterioration and acoustic emission characteristics of water-bearing sandstone in uniaxial compressive experiment[J]. Journal of Mining & Safety Engineering,2013,30(5):717-722.

[17] 王凯,蒋一峰,徐超. 不同含水率煤体单轴压缩力学特性及损伤统计模型研究[J]. 岩石力学与工程学报,2018,37(5):1070-1079. WANG Kai,JIANG Yifeng,XU Chao. Mechanical properties and statistical damage model of coal with different moisture contents under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1070-1079.

[18] 张连英. 高温作用下泥岩的损伤演化及破裂机理研究[D]. 徐州:中国矿业大学,2012.

[19] LIU Zaobao,SHAO Jianfu,XIE Shouyi,et al. Effects of relative humidity and mineral compositions on creep defor-mation and failure of a claystone under compression[J]. In-ternational Journal of Rock Mechanics and Mining Sciences,2018,103:68-76.

[20] 李明. 高温及冲击载荷作用下煤系砂岩损伤破裂机理研究[D]. 徐州:中国矿业大学,2014.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.