## **Coal Geology & Exploration**

Volume 52 | Issue 10

Article 15

10-25-2024

## Mechanisms and control of rock bursts in goaf-side roadways under the condition of thick and hard roofs in the Xinjie mining area, Inner Mongolia

#### LIU Wenchao

School of Energy & Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; Key Laboratory of Disaster Prevention and Disposal in Coal Mining, Ministry of Emergency Management, Beijing 100083, China; Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, China, liuwc2015hpu@163.com

#### **ZHAO** Yixin

School of Energy & Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; Key Laboratory of Disaster Prevention and Disposal in Coal Mining, Ministry of Emergency Management, Beijing 100083, China; Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, China, zhaoyx@cumtb.edu.cn

#### GUO Jihong

School of Energy & Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; Key Laboratory of Disaster Prevention and Disposal in Coal Mining, Ministry of Emergency Managehisen, Beijing 100083, China, Beijing Key Laboratory for Precise Mining of Intergrown Energy and Sources, China University of Mining and Technology (Beijing), Beijing 100083, China Part of the Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons,

and the Sustainability Commons

#### **Recommended Citation**

LIU Wenchao, ZHAO Yixin, GUO Jihong, et al. (2024) "Mechanisms and control of rock bursts in goaf-side roadways under the condition of thick and hard roofs in the Xinjie mining area, Inner Mongolia," *Coal Geology & Exploration*: Vol. 52: Iss. 10, Article 15.

DOI: 10.12363/issn.1001-1986.24.05.0327

Available at: https://cge.researchcommons.org/journal/vol52/iss10/15

This Prevention and Control Technology is brought to you for free and open access by Coal Geology & Exploration. It has been accepted for inclusion in Coal Geology & Exploration by an authorized editor of Coal Geology & Exploration. For more information, please contact 380940179@qq.com.



刘文超,赵毅鑫,郭继鸿.新街矿区厚硬顶板条件邻空巷道冲击地压机理与控制[J].煤田地质与勘探,2024,52(10): 153-165. doi: 10.12363/issn.1001-1986.24.05.0327

LIU Wenchao, ZHAO Yixin, GUO Jihong. Mechanisms and control of rock bursts in goaf-side roadways under the condition of thick and hard roofs in the Xinjie mining area, Inner Mongolia[J]. Coal Geology & Exploration, 2024, 52(10): 153–165. doi: 10.12363/issn.1001-1986.24.05.0327

## 新街矿区厚硬顶板条件邻空巷道冲击地压机理与控制

刘文超<sup>1,2,3</sup>,赵毅鑫<sup>1,2,3,\*</sup>,郭继鸿<sup>1,2,3</sup>

 (1. 中国矿业大学(北京) 能源与矿业学院,北京 100083; 2. 煤矿灾害预防与处置应急管理部重点实验室, 北京 100083; 3. 中国矿业大学(北京)共伴生能源精准开采北京市重点实验室,北京 100083)

摘要:【目的和方法】针对厚硬顶板条件下深部矿井回采巷道冲击地压严重威胁工作面安全生产的 问题,以内蒙古新街矿区典型深采矿井31103工作面辅运巷为工程研究背景,分析邻空巷道冲击地 压频发区域外在主控因素和内在驱动力源:构建基于软化地基与弹性地基假定"岩梁-地基"系统力 学特性的顶板断裂前受载力学模型,解析采场覆岩结构演化过程厚硬顶板岩梁能量演化规律及其主 控因素;运用FLAC<sup>3D</sup>模拟并探查邻空巷道冲击失稳高风险区域位置与特征;研究采场覆岩结构优 化与围岩应力能量控制方案,制定厚硬顶板破断诱发邻空巷道冲击地压控制方法。【结果和结论】 结果表明:(1)邻空巷道冲击地压频发区域易发生以高静载或高静载叠加动载为主导灾变力源的失稳 破坏,影响因素主要为顶板厚硬岩层、邻近采空区、区段煤柱。(2)顶板储能总量与覆岩载荷、软化 地基系数、顶板岩梁弹性模量及惯性矩、采空区顶板极限跨距、工作面支架参数等有关。其中,覆 岩载荷、软化地基系数和采空区顶板极限跨距与岩梁应变能密度呈正相关,顶板岩梁弹性模量及惯 性矩、工作面支护参数与岩梁应变能密度呈负相关。(3)回采期间 3-1103 工作面超前支承压力区及其 影响区域内区段煤柱和回采巷道煤体呈现多因素叠加影响,发生应力集中和能量积聚,是冲击失稳 高风险区域;该区域较3-1101综采面其围岩应力与能量集中度进一步加剧增大。其中,工作面前方 应力和应变能密度峰值增幅最大分别为 6.61%、12.04%, 区段煤柱应力和应变能密度峰值增幅最大 分别为 29.06%、65.14%。(4)提出了"卸压爆破预处理高静载区域+深孔爆破或水力致裂预裂厚硬顶 板+强化巷道吸能防冲支护"的解决方案,现场应用效果明显。

关键 词:厚硬顶板;冲击地压;矿震;邻空巷道;分源防控

中图分类号: TD324 文献标志码: A 文章编号: 1001-1986(2024)10-0153-13

# Mechanisms and control of rock bursts in goaf-side roadways under the condition of thick and hard roofs in the Xinjie mining area, Inner Mongolia

LIU Wenchao<sup>1,2,3</sup>, ZHAO Yixin<sup>1,2,3,\*</sup>, GUO Jihong<sup>1,2,3</sup>

 School of Energy & Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
 Key Laboratory of Disaster Prevention and Disposal in Coal Mining, Ministry of Emergency Management, Beijing 100083, China; 3. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 100083, China)

**Abstract:** [**Objective and Methods**] Rock bursts in mining roadways in deep coal mines under the condition of thick and hard roofs severely threaten the safe coal mining of the mining face. To meet this threat, this study, focusing on the No.3<sup>-1</sup>103 mining face auxiliary transport roadway, a goaf-side roadway, in a typical deep mine of the Xinjie mining

收稿日期: 2024-05-10; 接收日期: 2024-09-10

基金项目: 国家自然科学基金项目(52225402, U1910206)

第一作者:刘文超,1990年生,男,河南信阳人,博士研究生。E-mail: liuwc2015hpu@163.com

<sup>\*</sup>通信作者:赵毅鑫,1977年生,男,河南洛阳人,博士,教授,博士生导师。E-mail: zhaoyx@cumtb.edu.cn

<sup>©</sup> Editorial Office of Coal Geology & Exploration. OA under CC BY-NC-ND

area, Inner Mongolia, analyzed the external dominant factors and internal driving sources for frequent rock bursts in the goaf-side roadway. Assuming the mechanical characteristics of the rock beam-foundation system, this study constructed mechanical models under loading before roof fracturing based on soft and elastic foundations. Using these models, this study determined the evolutionary patterns of the rock beam energy in the thick and hard roof during the structural evolution of overburden in the stope, as well as their dominant factors. Based on FLAC<sup>3D</sup> simulation results, this study investigated the locations and characteristics of high-risk zones of rock burst-induced instability in the goaf-side roadway. Finally, this study developed a scheme for optimizing overburden structures and controlling the stress energy of surrounding rocks in the stope, along with a method for controlling rock bursts in the goaf-side roadway induced by the fracturing of the thick and hard roof. [Results and Conclusions] The results indicate that zones with frequent rock bursts in the goaf-side roadway are susceptible to instability failures caused primarily by high static loads or high static loads with superimposed dynamic loads. The primary influencing factors of such failures include the thick and hard roof, the adjacent goaf, and section coal pillars. The total energy storage capacity of the roof is related to factors like overburden load, soft foundation coefficient, the elastic modulus and moment of inertia of rock beams in the roof, the limit span of the goaf roof, and the support parameters of the mining face. Specifically, the strain energy density of the rock beams is positively correlated with the overburden load, soft foundation coefficient, and limit span of the goaf roof but negatively correlated with the elastic modulus and moment of inertia of rock beams in the roof and the support parameters of the mining face. During the coal mining along the No.3<sup>-1</sup>103 mining face, section coal pillars and coals in the mining roadway within the advance support pressure zone and its influencing zones are affected by superimposed multiple factors, which lead to stress concentration and energy accumulation. Therefore, these zones face high risks of rock burst-induced instability. Compared to the No.3<sup>-1</sup>101 fully mechanized mining face, these zones exhibit significantly intensified surrounding rock stress and energy concentration. The peak values of stress and strain energy densities in front of the mining face increase by 6.61% and 12.04% at most, respectively. In contrast, the peak values of stress and strain energy densities of section coal pillars increase by 29.09% and 65.14% at most, respectively. Finally, this study developed a comprehensive scheme involving the blasting and pressure relief of high static load zones, the pre-fracturing of the thick and hard roof through deep-hole blasting or hydraulic fracturing, reinforcing energy-absorbing and anti-rock burst supports in the roadway, with significant effects having been achieved in the field application of this scheme.

Keywords: thick and hard roof; rock burst; mining-induced earthquake; goaf-side roadway; source-specific prevention and control

冲击地压多发生在巷道,在巷道和工作面同时发生的情况也有存在<sup>[1]</sup>。巷道冲击地压一直是矿山灾害研究领域热点课题。随着开采深度增加和开采条件复杂化,巷道冲击地压严重威胁工作面安全生产,成为制约煤矿安全高产高效的重要瓶颈之一。现场调研发现,冲击地压频发区域多在回采巷道且区域煤层顶板赋存厚硬砂岩合层,顶板厚度大、整体性好、强度大、难垮落、易大面积悬顶,造成较大的应力集中。因此,认清采场覆岩结构演化过程厚硬顶板能量演化规律和顶板断裂诱冲机制是亟需解决的问题。

国内外学者针对厚硬顶板条件下采场煤岩动力灾 害机理及防控进行了诸多研究。在坚硬顶板破断失稳 形式和能量方面,包括顶板初次、周期来压前后工作面 上方顶板岩梁能量密度分布函数<sup>[2-3]</sup>,采场厚硬顶板采 动承载特性及其破断过程顶板能量积聚和释放规律<sup>[4]</sup>, 不同推采速度与充填率条件下厚硬顶板能量积聚与释 放规律<sup>[5]</sup>,顶板悬臂梁的破断形式及能量释放与回采速 度影响关系<sup>[6]</sup>等。在坚硬顶板破断失稳引起工作面矿 压显现方面,主要有厚硬顶板断裂产生的震动位移场、 震动能量及其诱发的矿震显现机制和矿震形成的远近 场效应[7-10] 及主要影响因素[11] 等。在坚硬顶板断裂或 结构失稳诱发邻空巷道冲击失稳方面,包括特厚煤层巷 道冲击破坏机理及主控影响因素[12],坚硬顶板长壁工 作面回采巷道冲击地压发生机制<sup>[13]</sup>,顶板预裂爆破对 邻空巷煤体的卸压机制[14],邻空巷道受载特征及冲击 失稳规律和失稳机理[15-16]。在冲击失稳防治理论和技 术方面,主要有大空间采场远近场坚硬顶板井上下控制 理论[17-18],坚硬顶板水射流预制缝槽定向预裂卸压防冲 方法<sup>[19]</sup>,断顶爆破防治冲击矿压技术体系<sup>[20]</sup>,切顶卸压 无煤柱自成巷技术<sup>[21]</sup>,基于强-弱-强(3S)结构的围岩 稳定性控制技术[22-23],坚硬煤岩体"钻-切-压"一体化 释能减冲技术[24],冲击地压巷道三级支护技术[25-26]及 "O"型棚抗冲支护技术<sup>[27]</sup>等。上述研究成果和认识为 厚硬顶板条件下巷道冲击地压防治奠定了基础。运用 数学和力学思想量化分析顶板能量变化及工程问题相 对复杂困难,目前学者们采用不同形式优化完善顶板能 量量化分析模型,但兼具煤岩合理变形特征与顶板能量 演化规律精确分析的相关研究较少,建立符合且能够更 好地反映现场实际情况的"顶板-煤层"受载力学模型 至关重要。

内蒙古新街矿区红庆河煤矿 3-1103 工作面辅运巷 一巷两用,从掘进至报废期间受重复强开采扰动影响, 冲击地压频发,严重影响矿井的安全高效开采。笔者以 内蒙古新街矿区红庆河煤矿 3-1103 工作面辅运巷为工 程背景,构建厚硬顶板断裂前"岩梁--地基"系统力学模 型,理论解析采场覆岩结构演化过程厚硬顶板岩梁能量 演化规律及其主控因素,揭示厚硬顶板破断诱发邻空巷 道冲击地压机理;厘清采场冲击失稳高风险区域位置与 特征、灾变力源及影响因素,形成邻空巷道冲击地压解 危卸压控制方案,以期为研究区和类似矿井的矿压防治 提供一整套防治方法。

#### 工程概况及邻空巷道矿压显现特征 1

#### 1.1 工作面及邻空巷道概况

新街矿区典型深采矿井红庆河煤矿 3-1101 综采面 为 3<sup>-1</sup> 煤层首采面,工作面长度 245.75 m,平均埋深

640 m,煤层均厚 6.36 m,倾角平均 3°; 3<sup>-1</sup>103 综采面为 接续工作面,工作面长度 210.95 m,平均埋深 714.50 m, 煤层均厚 6.69 m, 倾角平均 2°。均采用一次采全高采 煤方法及自然垮落法处理采空区顶板。3-1103 工作面 运输巷揭露 NF18 和 NF17 两条正断层,但对工作面影 响较小。3-1103 工作面辅运巷沿煤层底板布置,采用矩 形断面,断面尺寸(宽×高)为 5.0 m×3.8 m,采用锚网梁 索联合支护,工作面超前35m范围使用垛式支架进行 超前支护,其余空顶处采用单体液压支柱补强支护,局 部进行加强支护。3<sup>-1</sup>103 工作面辅运巷一巷两用服务 于两工作面回采。回采期间受 3-1101 工作面开采扰动 影响, 3-1103 工作面辅运巷曾发生严重冲击破坏, 在距 原辅运巷 30 m 处重掘 3<sup>-1</sup>103 工作面新辅运巷, 双工作 面间煤体被中间旧辅运巷分割为两段宽度为 30 m 的 煤柱,工作面及巷道布置如图1所示。





### Fig.1 Layout of mining faces and roadways and the zone with apparent rock bursts in the No.3<sup>-1</sup>103 auxiliary transport roadway

#### 1.2 邻空巷道矿压显现特征及诱因

分析新街矿区典型深采矿井工程地质资料和 3-1101 与 3-1103 工作面采掘过程动力现象, 发现具有以 下特征。

(1) 3-1101 工作面回采初期, 3-1103 工作面旧辅运巷 内矿压显现强烈。旧辅运巷掘进期间巷道围岩发生明 显变形破坏,回采期间受开采扰动影响变形破坏加剧, 工作面前方巷道底板出现开裂和翘起现象,后方巷道煤 炮声增多、锚杆断裂,局部巷道顶板与拱肩处出现冒顶 和网兜以及底板严重开裂翘起。3<sup>-1</sup>103 工作面新辅运 巷掘进过程受 3-101 工作面采空区影响,时常表现出 瞬间顶板下沉、片帮、底鼓、锚杆锚索崩断等动力现象。

(2) 3<sup>-1</sup>103 工作面回采期间, 3<sup>-1</sup>103 工作面新辅运巷 冲击事件频发[28-29],其中2次冲击事件显现区域如图1 所示。第一次,新辅运巷矿压显现强烈,煤炮声较大,巷 道内形成飓风并伴随扬尘,能见度极差。冲击显现区域 位于工作面超前 60 m 处向外 20 m 范围内, 巷道变形 明显,顶板下沉量最大为0.3m,两帮移近量最大为1.8m, 底板出现开裂和翘起现象,底鼓量最大为 0.4 m,局部 巷道顶板与拱肩出现冒顶和网兜,网片损毁撕裂崩断现 象。第二次,新辅运巷内发生冲击,形成强烈冲击波并 伴随扬尘,震感强烈。工作面超前 343.3 m 范围新辅运 巷内矿压显现剧烈,新辅运巷垛式超前支架前2m向 外底板出现严重底鼓现象;新辅运巷超前支护区回采侧 顶板下沉严重,底板出现严重底鼓现象;新辅运巷超前 工作面 102.0~343.3 m 范围内底板中间偏回采帮范围 发生严重底鼓,最大为 3.0 m。3<sup>-1</sup>103 工作面辅运巷冲 击显现区域现场照片如图2所示。

梳理新街矿区红庆河煤矿采场冲击显现案例与特 征,结合冲击区域煤层赋存条件、开采条件及矿压显现 特征等对邻空巷道冲击地压频发区域灾变失稳外在主 控因素进行初步分析,具体如下。





(1)回采巷道埋深大,开采强度高;煤体裂隙发育, 巷道围岩完整性相对较差;巷道断面大,围岩控制难度 大,且忽略底板支护。

(2) 顶板赋存多层厚砂岩合层,采场围岩应力集中 与顶板岩梁储能加剧;工作面初次与周期来压、单双工 作面"见方"甚至采场覆岩结构失稳等过程瞬间释能形 成强烈扰动动载,造成工作面冲击破坏。

(3)"厚硬顶板+邻近采空区+宽煤柱"条件下,邻空 巷道局部受多因素影响,应力环境更加复杂;其次,旧辅 运巷和联络巷对区段煤柱的切割作用破坏了其整体性 和完整性,降低区段煤柱稳定性,增大煤柱失稳风险; 受 3<sup>-1</sup>101 和 3<sup>-1</sup>103 工作面开采扰动强烈且重复影响, 增大邻空巷道冲击地压风险性。

通过上述分析,结合现场历次冲击案例可以判断, 顶板厚硬岩层、邻近采空区、区段煤柱等均是影响邻空 巷道冲击失稳的主要因素。

#### 2 采场厚硬顶板断裂诱发冲击地压机理

顶板破断释放能量主要由顶板断裂前岩梁弯曲变 形积聚的应变能和破断后基本顶破断岩块及其上方随 动垮落岩层回转动能组成<sup>[8]</sup>,前者决定其破断后释放能 量能级,厘清采场覆岩结构演化过程厚硬顶板能量演化 规律对治理厚硬顶板型动力灾害尤为重要。为探究采 场覆岩结构演化过程中厚硬顶板岩梁能量演化规律及 其主控因素,在前人研究基础上进一步完善建立符合现 场实际情况的顶板岩梁受载力学模型和优化合理的顶 板岩梁受力状态,将工作面煤壁前方屈服区和弹性区分 别视为软化地基和弹性地基,将顶板岩梁受上覆岩层载 荷与自重作用等效为均布载荷,构建基于弹性地基与软 化地基假定"岩梁-地基"系统力学特性的厚硬顶板断 裂前受载力学模型。

#### 2.1 岩梁能量演化分析

图 3 为厚硬顶板断裂前覆岩结构及受力特征。根据顶板岩梁受力状态不同,将其分为弹性区(-∞,0]、软化区[0,1]、工作面支护区[*l*,*l*+*L*<sub>k</sub>]和采空区[*l*+*L*<sub>k</sub>,*l*+*L*]; 其中,各区间上方顶板岩梁挠度函数分别为*w*(*x*)<sub>3</sub>、 *w*(*x*)<sub>2</sub>、*w*(*x*)<sub>1-1</sub>、*w*(*x*)<sub>1-r</sub>,其中下标 1-r、1-1分别表示采 空区右边和左边。





根据 Winkler 假设<sup>[32]</sup>,依次对弹性区、软化区、工 作面支护区和采空区上方 4 段连续岩梁隔离分析,分别 建立各区间上方顶板岩梁力学特性参数函数方程;根据 顶板岩梁边界条件和隔离段间连续条件,求解函数方程 并依次得到工作面初次来压前各区间上方顶板岩梁应 变 能 密 度 函 数 dU(x)<sub>3</sub>/dx、dU(x)<sub>2</sub>/dx、dU(x)<sub>1-1</sub>/dx、 dU(x)<sub>1-r</sub>/dx,解析式为:

 $dU(x)_3/dx = 2EI\alpha^4 \exp(2\alpha x)[B_2\cos(\alpha x) - B_1\sin(\alpha x)]^2 \quad (1)$ 

 $dU(x)_2/dx = 2EI\beta^4 [C_4 \exp(-\sqrt{2}\beta x) + C_2 \exp(\sqrt{2}\beta x) - C_1 \cos(\sqrt{2}\beta x) - C_3 \sin(\sqrt{2}\beta x)]^2$ (2)

$$dU(x)_{1-1}/dx = \frac{1}{72EI} [6M_l + 6Q_l(l-x) + (3)]$$

$$dU(x)_{1-r}/dx = \frac{1}{72EI} \{ 6M_l + L_k^2(p_0 + 2p_k) + 3(l-x)[L_k(p_0 + p_k) + q(l-x) + 2Q_l] \}^2$$
(4)

令弹性区与软化区上方岩梁挠度方程中特征系数 α = [k<sub>1</sub>/(4*EI*)]<sup>1/4</sup>, β = [k<sub>2</sub>/(4*EI*)]<sup>1/4</sup>。工作面周期来压期 间,各区间上方顶板岩梁应变能密度函数方程的解析过 程与工作面初次来压期间类似,不再赘述。工作面初次 来压、周期来压期间因顶板岩梁边界条件和隔离段间 连续条件不同,其积分常数解析解不同。将各区间顶板 岩梁应变能密度函数方程进行积分并线性叠加,可得工 作面初次和周期来压期间顶板破断前单位宽度顶板岩 梁积聚应变能,即 U<sub>c</sub>和 U<sub>z</sub>。

#### 2.2 岩梁能量积聚影响因素

根据式(1)—式(4)可知,顶板岩梁存储应变能主要 与覆岩载荷 q、地基系数( $k_1$ 、 $k_2$ )、顶板岩梁(弹性模量 E、 惯性矩 D、采空区顶板极限跨距(L、 $\hat{L}$ )、工作面支架参 数  $p_0$ 等有关。根据新街矿区典型深采矿井 3<sup>-1</sup>101 和 3<sup>-1</sup>103 工作面现场实际工程参数,运用 Mathematica 软 件求解并绘制工作面初次来压、周期来压期间不同对 比方案下顶板断裂前岩梁应变能密度变化曲线,如图 4 和图 5 所示。

#### 1) 工作面初次来压期间

顶板岩梁应变能密度峰值位置在采空区中部(x=L) 与煤体内部( $x=x_{max}$ ),顶板岩梁弹性模量 E 与惯性矩 I、 工作面支护参数  $p_0$ 与岩梁应变能密度峰值呈负相关关 系,参数值越大顶板岩梁应变能密度峰值越低,且岩梁





Fig.4 Distribution patterns of strain energy density of rock beams in the roof under different parameters during the initial weighting of mining face (first weighting)







储能总量越小。其中, *E*(25、30、35、40 GPa) 逐渐增大时, 采空区中部(*x*=*L*) 与煤体内部(*x*=*x*<sub>max</sub>) 顶板岩梁应变能密度峰值分别降低了 72.57%、82.86%; *I*(30、40、50、60 m<sup>4</sup>) 逐渐增大时, 采空区中部(*x*=*L*) 与煤体内部(*x*=*x*<sub>max</sub>) 顶板岩梁应变能密度峰值分别降低了 72.57%、141.44%; *p*<sub>0</sub>(1.5、3.0、4.5、6.0 MN/m) 逐渐增大时, 采空区中部(*x*=*L*) 与煤体内部(*x*=*x*<sub>max</sub>) 顶板岩梁应变能密度峰值分别降低 2.98%、10.89%。覆岩载荷 *q*、软化地基

系数 k<sub>2</sub> 和采空区顶板极限跨距 L 与顶板岩梁应变能密 度峰值呈正相关关系,参数值越大顶板岩梁应变能密度 峰值越高,其岩梁储能总量越大。其中,q(15、17、19、 21 MN/m)逐渐增大时,采空区中部(x=L)与煤体内 部(x=x<sub>max</sub>)顶板岩梁应变能密度峰值增幅分别为 40.92%、82.64%; k<sub>2</sub>(1.00k<sub>1</sub>、1.25k<sub>1</sub>、1.50k<sub>1</sub>、1.75k<sub>1</sub>)逐渐 增大时,采空区中部(x=L)与煤体内部(x=x<sub>max</sub>)顶板岩梁 应变能密度峰值增幅分别为 18.37%、24.40%。L(15、 20、25、30 m) 增大时, 采空区中部(x=L) 与煤体内部(x=x<sub>max</sub>) 顶板岩梁应变能密度峰值及其增幅差异明显, L 越大其储能总量越大。

#### 2) 工作面周期来压期间

在煤体内部( $x=x_{max}$ ),工作面周期来压期间各参数 对顶板岩梁应变能密度峰值的影响与工作面初次来压 期间相同。E、I和 $p_0$ 与顶板岩梁应变能密度峰值呈负 相关关系。随着E(25, 30, 35, 40 GPa)、 $I(30, 40, 50, 60 \text{ m}^4)$ 、 $p_0(1.5, 3.0, 4.5, 6.0 \text{ MN/m})$ 的逐渐增大, $x=x_{max}$ 处顶板岩梁应变能密度峰值分别降低了 61.08%、 98.40%和10.09%。 $q, k_2$ 与顶板岩梁应变能密度峰值 呈正相关关系,随着 $q(15, 17, 19, 21 \text{ MN/m}), k_2(1.00k_1, 1.25k_1, 1.50k_1, 1.75k_1)$ 的增大, $x=x_{max}$ 处顶板岩梁应变 能密度峰值增幅分别为 55.67%、22.85%; $\hat{L}(10, 13, 16, 19)$ m逐渐增大, $x=x_{max}$ 处顶板岩梁应变能密度峰值及 其增幅差异明显, $\hat{L}$ 越大整个顶板储能总量越大。

综上分析,深采矿井厚硬顶板问题更加突出,改变

顶板性质(弹性模量、惯性矩)和工作面支护参数以降低 工作面初次来压、周期来压破断前岩梁应变能密度,减 小单位宽度顶板储能总量。工作面支架一定程度上降 低了顶板岩梁应变能密度,但增大了采空区顶板极限跨 距,生产过程中,进行科学的支架选型并优化支护强 度是必要的,可通过优化顶板结构缩短顶板跨距来降低 顶板岩梁储能,减弱或消除由厚硬顶板断裂引起的冲击 载荷。

#### 3 邻空巷道冲击地压高风险区域位置与特征

以新街矿区典型深采矿井 3<sup>-1</sup>101 和 3<sup>-1</sup>103 工作面 为工程背景,按照工作面开采时序,模拟工作面全生命 周期内不同阶段采场围岩应力场与能量场,优选工作面 回采过程典型阶段模拟结果,采场围岩应力三维空间分 布形态如图 6 和图 7 所示。

由图中可知,回采过程工作面、区段煤柱与回采巷 道区域煤体应力在采场围岩三维空间范围内形成明显



Fig.6 The three-dimensional spatial distribution of surrounding rock stress in No.3<sup>-1</sup>101 mining face



#### 图 7 3<sup>-1</sup>103 综采面采场围岩应力三维空间分布形态 Fig.7 Three-dimensional spatial distribution of surrounding rock stress in the No.3<sup>-1</sup>103 fully mechanized mining face

的高应力等值泡体,区域煤岩应力集中度较大;3<sup>-1</sup>103 综采面回采期间围岩应力集中度进一步加剧,区域内煤 岩应力较 3<sup>-1</sup>101 综采面均明显增大。根据工作面及巷 道布置,结合数值模拟结果,3<sup>-1</sup>103 综采面回采期间冲 击失稳高风险区域主要在工作面前方 Q<sub>v</sub>区、区段煤柱 Q<sub>w</sub>区、工作面端头 Q<sub>w</sub>区及回采巷道 Q<sub>w</sub>区,如图 7a 所 示,下同。局部区域应力和能量呈现多因素叠加影响, 具体表现为:(1) 3<sup>-1</sup>103 综采面覆岩结构对工作面和区 段煤柱或邻空巷道的影响;(2) 3<sup>-1</sup>101 工作面采空区侧 向覆岩结构对其下部区段煤柱回转挤压的影响;(3) 区 段煤柱应力集中的影响;(4) 回采期间断层地质构造影 响;(5) 邻空巷道、联络巷及巷道交汇的影响;(6) 工作 面推进速度与工作面支架工作阻力影响。

由模拟结果分析可知, 3<sup>-1</sup>101 综采面回采过程区段 煤柱受 3<sup>-1</sup>101 工作面采空区影响, 其应力和应变能密度 峰值较工作面前方分别高 22.26% 和 45.88%。3<sup>-1</sup>103 综 采面回采期间相同推进距离时工作面前方围岩应力和 应变能密度峰值比 3<sup>-1</sup>101 综采面分别大 6.61%、 12.04%<sup>[33]</sup>;采场侧向区段煤柱应力和应变能密度峰值 增幅分别为 29.06%、65.14%。3<sup>-1</sup>103 综采面回采期间 邻空巷道冲击地压高风险区域位置在回采巷道 Q<sub>W</sub>区, 该区域围岩均处于高应力集中、高能量积聚状态,发生 冲击地压风险更大。

#### 4 厚硬顶板破断诱发邻空巷道冲击地压控制方法

#### 4.1 工作面覆岩结构优化与围岩应力和能量控制

前文分析表明,局部冲击地压高风险区域多因素相 互影响、多应力相互叠加造成应力环境复杂,为了有效 防御深部高应力采掘工作面冲击地压危害,降低局部区 域煤岩应力集中程度,控制煤岩能量积聚释放率,应对 采场冲击地压危险区域进行分源防控治理。削弱或转 移局部高静载应力,降低或减弱区域冲击动载,减少或 消除多应力叠加,达到分源控制采场应力与能量的目的。 本节主要分析工作面覆岩结构和采场侧向覆岩结构特 征对工作面或邻空巷道围岩应力和能量的影响,提出并 制定优化方案。

运用 Mathematica 软件求解式(1)—式(4), 工作面 初次和周期来压期间顶板破断前单位宽度顶板岩梁积

聚应变能 U<sub>c</sub> 和 U<sub>z</sub> 的解析式与钱鸣高等<sup>[34]</sup> 认为顶板初 次、周期垮落过程中顶板弯曲弹性能与顶板岩层悬顶 长度的 5 次方成正比的结论一致。不同长度顶板岩梁 初次、周期破断前单位宽度顶板积聚应变能与增幅及 其变化规律见表 1, 其拟合曲线如图 8 所示。

表 1 不同长度顶板岩梁应变能值与增幅变化 Table 1 Strain energy values and their increased amplitude for rock beams under different roof lengths

| Tuble T Strum energy values and ener mercused ampricate for Fouries and of an energins |                           |              |         |                           |              |
|----------------------------------------------------------------------------------------|---------------------------|--------------|---------|---------------------------|--------------|
| 初次来压                                                                                   |                           |              | 周期来压    |                           |              |
| 顶板长度L/m                                                                                | 顶板岩梁应变能U <sub>e</sub> /MJ | 顶板岩梁应变能增幅k。% | 顶板长度L/m | 顶板岩梁应变能U <sub>z</sub> /MJ | 顶板岩梁应变能增幅k_% |
| 15                                                                                     | 28.064                    |              | 10      | 22.452                    |              |
| 20                                                                                     | 65.670                    | 134.00       | 13      | 47.036                    | 109.49       |
| 25                                                                                     | 138.485                   | 393.46       | 16      | 85.823                    | 282.25       |
| 30                                                                                     | 267.031                   | 851.50       | 19      | 145.940                   | 550.01       |





不同长度顶板岩梁初次、周期破断前单位宽度顶 板积聚应变能对幂函数均有较好拟合性,其增幅对二次 函数均有较好拟合性,单位宽度岩梁积聚应变能与其增 幅随着顶板长度增大而增大。其中,顶板初次破断前采 空区顶板极限跨距 *L*(15、20、25、30 m)逐渐增大时,单 位宽度顶板岩梁积聚应变能 *U*。由 28.064 MJ 增大至 267.031 MJ,增长了 8.5 倍;顶板周期破断前采空区顶 板极限跨距*L*(10、13、16、19 m)逐渐增大时,单位宽度 顶板岩梁积聚应变能 U<sub>z</sub>由 22.452 MJ 增大至 145.940 MJ, 增长了 5.5 倍, 即采空区厚硬顶板极限跨 距越大, 其顶板岩梁与采场围岩积聚应变能就越大, 采 场覆岩结构演化过程厚硬顶板破断或结构失稳释放能 量就越大, 形成冲击载荷越强。可通过优化采场覆岩结 构缩短工作面厚硬顶板悬顶长度, 减弱或消除由厚硬顶 板破断或结构失稳引起的冲击载荷。

#### **4.2** 采场侧向覆岩结构优化与邻空巷道应力和能量 控制

3<sup>-1</sup>103 工作面回采期间采场侧向覆岩结构如图 9 所示。

采场侧向覆岩结构演化过程中厚硬顶板破断或失 稳后可能存在3种模式,如图10所示。煤矿井下现场



(a) 采场侧向覆岩结构



(b) 3<sup>-1</sup>103 工作面 "O-X" 破断
 图 9 采场侧向覆岩结构
 Fig.9 Lateral overburden structure of the stope



图 10 未切侧问贝权结构形式 Fig.10 Styles of the lateral roof structure of the stope

工作面回采后回采巷道不做其他使用,且采场侧向覆岩 结构未对邻近采掘工程造成影响,随采空区自然垮落压 实,即模式III;反之,采空区对邻近采掘工程造成影响, 加剧区域应力集中能量积聚,即模式 I 和模式 II,则需 回采前预处理回采巷道顶板结构,降低或削弱其对邻近 采掘工程的影响。

采场侧向覆岩结构优化目的在于削弱或者降低采 场侧向顶板结构回转挤压下部区段煤柱、减小区段煤 柱上覆岩层影响范围,提高区段煤柱上覆岩层稳定性。 通过增加高位厚硬顶板下部岩层的垮落性,限制高位厚 硬顶板回转变形空间,消除或削弱其破断块体对区段煤 柱及邻空巷道的影响。因此,控制低位厚硬顶板破断位 置和破断块体尺寸,增加低位厚硬顶板及其以下岩层垮 落性,优化高位厚硬顶板破断位置,减小区段煤柱上覆 岩层对其加载作用和影响范围来改善采场侧向及邻空 巷道围岩应力环境。3<sup>-1</sup>103 工作面回采前应预处理回 采巷道顶板结构,改善区域顶板条件,削弱或降低 3<sup>-1</sup>101 工作面采空区侧向覆岩结构对邻近 3<sup>-1</sup>103 工作 面与 3<sup>-1</sup>103 工作面新辅运巷的影响。

#### 4.3 邻空巷道冲击失稳控制方案

为了弱化新街矿区典型深采矿井 3<sup>-1</sup>103 综采面回 采期间邻空巷道冲击地压危害,可降低巷道围岩应力与 能量积聚度,强化巷道围岩控制。具体方案如下:弱化 区段煤柱应力积聚能力,避免煤柱高应力集中;改变 3<sup>-1</sup>103 工作面辅运巷顶板状态,削弱采场侧向覆岩结构 对区段煤柱与邻空巷道的影响,以改善围岩应力环境; 强化巷道吸能防冲支护能力。

根据现场具体位置预卸压防冲类型及原理: (1) 3<sup>-1</sup>101工作面回采期间,在 3<sup>-1</sup>101工作面运输巷内 预先采用深孔爆破或水力压裂,对区段煤柱上方厚硬顶 板进行切顶卸压。其目的在于削弱 3<sup>-1</sup>101工作面采空 区侧向覆岩结构对其下部区段煤柱回转挤压作用,改善 3<sup>-1</sup>103工作面辅运巷应力环境。(2) 3<sup>-1</sup>103工作面回采 期间,在 3<sup>-1</sup>103工作面新运输巷内预先采用深孔爆破 或水力压裂,对工作面与区段煤柱侧上方厚硬顶板进行 切顶卸压。其目的在于缩短工作面来压步距,降低来压 强度与工作面静载。(3) 在 3<sup>-1</sup>103工作面新辅运巷内预 先采用大直径钻孔对回采帮和煤柱帮煤体超前工作面 进行卸压处理,以降低新辅运巷围岩静载。(4)加强 3<sup>-1</sup>103 工作面辅运巷超前支护,强化巷道吸能防冲。

1) 3-1101 工作面回采期间卸压防冲方案

3<sup>-1</sup>103 工作面新辅运巷在采掘过程煤岩动力灾害 频发,现场生产过程中对宽煤柱进行大直径钻孔卸压处 理,对 3<sup>-1</sup>103 工作面新、旧辅运巷上覆厚硬顶板进行水 力压裂切顶卸压。具体实施方案如下:(1) 大直径钻孔 卸压。保障 3<sup>-1</sup>103 工作面新辅运巷安全掘进,预先在 3<sup>-1</sup>103 工作面旧辅运巷内煤柱侧超前 3<sup>-1</sup>103 工作面新 辅运巷掘进面实施大直径钻孔卸压,后期在 3<sup>-1</sup>103 工 作面新辅运巷掘进面后方回采帮实施大直径钻孔卸压, 如图 11a 所示。(2) 水力压裂切顶卸压。试验段为 3<sup>-1</sup>101 工作面运输巷里程 1 700~2 700 m,共 1 000 m。向工作 面后方沿 3<sup>-1</sup>101 工作面运输巷轴向偏煤柱侧布置压裂 钻孔,开口位置在巷道顶板距离煤柱 1 m 左右,与巷道 轴向夹角 5°,钻孔长度 50 m,倾角 50°,采用后退式单 孔多次压裂,压裂钻孔间距 10 m。巷道顶板水力压裂 钻孔布置和切顶卸压参数如图 11b 和图 11c 所示。





#### 2) 3-1103 工作面回采期间解危防冲方案

3<sup>-1</sup>103 工作面回采前在 3<sup>-1</sup>103 工作面辅运巷冲击 失稳高风险区域采取大直径钻孔和水力压裂进行超前 预卸压;回采期间对预测预报危险区域采取解危卸压处 理。现场具体防控措施<sup>[33]</sup>:(1)工作面回采前,在 3<sup>-1</sup>103工作面辅运巷强及中等冲击危险区域内回采帮 和煤柱帮超前工作面 300 m进行大直径钻孔卸压; (2) 3<sup>-1</sup>103 工作面辅运巷距离工作面开切眼 300 m范围 内回采侧与煤柱侧顶板实施水力压裂;(3)工作面回采 期间实时动态预测预报,采用大直径钻孔、煤体爆破和 底板爆破卸压措施进行解危卸压处理。

通过对新街矿区典型深采矿井 3<sup>-1</sup>103 工作面辅运 巷冲击地压高风险区域进行预卸压处理,改善邻空巷道 顶板条件,降低了巷道围岩应力集中程度,削弱巷道底 板水平轴向应力,加强巷道底板管理。巷道矿压显著降 低,巷道围岩变形破坏得到改善和控制。

#### 5 结论

(1)指出厚硬顶板条件邻空巷道冲击破坏灾变力源 以高静载或高静载+动载为主导,顶板厚硬岩层、邻近 采空区、区段煤柱等是主要影响因素。

(2)构建基于软化地基与弹性地基假定"岩梁-地基"系统力学特性的顶板断裂前受载力学模型,推导并解析了工作面初次、周期来压期间厚硬顶板破断过程单位宽度顶板释放的总能量;覆岩载荷、地基系数、顶板岩梁弹性模量和惯性矩、采空区顶板极限跨距、工作面支架参数是顶板断裂过程岩梁能量积聚的主控因素。

(3)模拟结果表明, 3<sup>-1</sup>103 综采面回采期间受到厚 硬顶板岩层、邻近 3<sup>-1</sup>101 工作面采空区和区段煤柱影 响, 工作面前方应力和应变能密度峰值较 3<sup>-1</sup>101 综采 面增幅分别为 6.61%、12.04%; 采场侧向区段煤柱应力 和应变能密度峰值分别增大 29.06%、65.14%; 邻空巷 道冲击地压高风险区域围岩处于高应力集中、高能量 积聚状态, 达到冲击启动条件自发或受外界扰动形成以 高静载或高静载+动载为主导灾变力源的冲击破坏。

(4) 从切断冲击力源、降低应力集中与阻隔高集中 应力传递3个方面提出了"卸压爆破预处理高静载区 域+深孔爆破或水力致裂预裂厚硬顶板+强化巷道吸能 防冲支护"的方案进行分源防控治理,现场实施效果良好。

#### 符号注释:

a 为岩梁宽度, m; B₁→B₂、C₁→C₄ 分别为弹性区、 软化区岩梁挠度微分方程的积分常数; dξ为岩梁微段; E 为顶板岩梁弹性模量, GPa; E<sub>m</sub> 为煤层的弹性模量, GPa; h 为岩梁厚度, m; h₂、h₃、h₁、h₁分别为直接顶厚度、 基本顶厚度、基本顶上方随跨岩层厚度、高位厚硬顶板 厚度, m; I 为单位宽度顶板岩梁惯性矩, m<sup>4</sup>; k₁、k₂ 分别 为弹性地基和软化地基系数; k<sub>c</sub>、k₂ 分别为不同长度顶 板岩梁初次、周期破断前单位宽度顶板积聚应变能增 幅; l、 l分别为工作面初次来压、周期来压前软化区宽 度, m; 2L、 L分别为工作面初次来压和周期来压期间顶 板断裂前采空区顶板极限跨距, m;  $L_k$  为支架控顶距, m; m 为煤层厚度, m;  $M_l$ ,  $M_m$ 分别为 x=l处和工作面周期 来压期间采空区上方顶板岩梁右侧边界处弯矩, MN·m; M(l+L)为 x=l+L 处顶板岩梁弯矩, MN·m;  $p_0$ ,  $p_k$ 分别 为工作面支架前、后柱支撑力, 其大小呈线性变化, MN/m;  $Q_l$ ,  $Q_m$ 分别为 x=l处和工作面周期来压期间采 空区上方顶板岩梁有侧边界处剪力, MN; Q(l+L)为 x=l+L处顶板岩梁剪力, MN;  $x_0$  为采场侧向煤体损伤破 坏宽度, m; a、 $\beta$ 分别为弹性区与软化区上方岩梁挠度 方程 中特征系数,  $a = (k_1/(4EI))^{1/4}$ ,  $\beta = (k_2/(4EI))^{1/4}$ ;  $\theta(l+L)$ 为 x=l+L处顶板岩梁转角, (°);  $\theta_1$ 、 $\theta_2$ 、 $\theta_3$  为覆岩 破裂角, (°)。

#### 利益冲突声明/Conflict of Interests

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

#### 参考文献(References)

- [1] 窦林名, 牟宗龙, 曹安业, 等. 煤矿冲击矿压防治[M]. 北京: 科学 出版社, 2017.
- [2] 潘岳,王志强,李爱武.初次断裂期间超前工作面坚硬顶板挠度、 弯矩和能量变化的解析解[J].岩石力学与工程学报,2012,31(1): 32-41.

PAN Yue, WANG Zhiqiang, LI Aiwu. Analytic solutions of deflection, bending moment and energy change of tight roof of advanced working surface during initial fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 32–41.

[3] 潘岳,顾士坦.周期性来压坚硬顶板裂纹萌生初始阶段的弯矩、 剪力、挠度和应变能变化分析[J].岩石力学与工程学报,2014, 33(6):1123-1134.

PAN Yue, GU Shitan. Analysis of bending moment, shear force, deflection and strain energy of hard roof at initial stage of cracking during periodic pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1123–1134.

- [4] 卜庆为, 涂敏, 张向阳, 等. 采场厚硬顶板破断失稳与能量聚散 演化研究[J]. 采矿与安全工程学报, 2022, 39(5): 867-878.
  BU Qingwei, TU Min, ZHANG Xiangyang, et al. Study on fracture instability and energy accumulation-release evolution of thickhard roof in stope[J]. Journal of Mining & Safety Engineering, 2022, 39(5): 867-878.
- [5] 李文龙, 屠世浩, 郝定溢, 等. 推采速度和充实率对深井充填面 厚硬顶板聚能与释能的影响[J]. 中国矿业大学学报, 2021, 50(3): 498-506.

LI Wenlong, TU Shihao, HAO Dingyi, et al. Influence of mining speed and filling ratio on energy accumulation and release of thick and hard roof in deep backfilling working face[J]. Journal of China University of Mining & Technology, 2021, 50(3): 498–506.

[6] 冯龙飞,窦林名,王晓东,等.回采速度对坚硬顶板运动释放能

量的影响机制[J]. 煤炭学报, 2019, 44(11): 3329-3339.

FENG Longfei, DOU Linming, WANG Xiaodong, et al. Mechanism of mining advance speed on energy release from hard roof movement[J]. Journal of China Coal Society, 2019, 44(11): 3329–3339.

- [7] 王恩元,冯俊军,孔祥国,等. 坚硬顶板断裂震源模型及应力波 远场震动效应[J].采矿与安全工程学报,2018,35(4):787-794.
  WANG Enyuan, FENG Junjun, KONG Xiangguo, et al. A hard roof fracture source model and its far-field seismic impact by stress wave[J]. Journal of Mining & Safety Engineering, 2018, 35(4):787-794.
- [8] 高明仕, 徐东, 贺永亮, 等. 厚硬顶板覆岩冲击矿震影响的远近 场效应研究[J]. 采矿与安全工程学报, 2022, 39(2): 215-226. GAO Mingshi, XU Dong, HE Yongliang, et al. Investigation on the near-far field effect of rock burst subject to the breakage of thick and hard overburden[J]. Journal of Mining & Safety Engineering, 2022, 39(2): 215-226.
- [9] 潘超. 高位坚硬顶板失稳诱发强矿压机理与控制[D]. 重庆:重 庆大学, 2020.

PAN Chao. Mechanism and control of strong ground pressure induced by instability of high hard roof[D]. Chongqing: Chongqing University, 2020.

[10] 窦礼同. 厚煤层坚硬顶板结构失稳诱发强矿压机制与防控技术[D]. 淮南:安徽理工大学, 2021.

DOU Litong. Mechanism and prevention technology of strong ground pressure induced by structural instability of hard roof in thick coal seam[D]. Huainan: Anhui University of Science & Technology, 2021.

[11] 杨敬轩,刘长友,于斌,等.坚硬顶板群下工作面强矿压显现机 理与支护强度确定[J].北京科技大学学报,2014,36(5):576-583.

YANG Jingxuan, LIU Changyou, YU Bin, et al. Strong strata pressure caused by hard roof group structure breaking and supporting strength determination[J]. Journal of University of Science and Technology Beijing, 2014, 36(5): 576–583.

- [12] 高明仕, 徐东, 王海川, 等. 特厚煤层巷道冲击破坏机理及全锚 索支护技术[J]. 煤炭学报, 2023, 48(5): 1943-1956.
  GAO Mingshi, XU Dong, WANG Haichuan, et al. Shock failure mechanism of roadway in extra thick coal seam and full anchor cable support technology[J]. Journal of China Coal Society, 2023, 48(5): 1943-1956.
- [13] 韩军,崔露郁,贾冬旭,等. 坚硬顶板回采巷道冲击地压的卸载 滑脱机制[J]. 煤炭学报, 2022, 47(2): 711-721.
  HAN Jun, CUI Luyu, JIA Dongxu, et al. Unloading-slippage mechanism of rock burst occurred in longwall roadway[J]. Journal of China Coal Society, 2022, 47(2): 711-721.
- [14] 解嘉豪,韩刚,孙凯,等. 邻空巷坚硬顶板预裂爆破防冲机理及 效果检验[J]. 煤炭学报, 2023, 48(5): 2078-2091.
  XIE Jiahao, HAN Gang, SUN Kai, et al. Rockburst prevention mechanism and effect test of blast presplitting of hard roof in gobside roadway[J]. Journal of China Coal Society, 2023, 48(5): 2078-2091.
- [15] 赵毅鑫,周金龙,刘文岗.新街矿区深部开采邻空巷道受载特征 及冲击失稳规律分析[J].煤炭学报,2020,45(5):1595-1606.

ZHAO Yixin, ZHOU Jinlong, LIU Wengang. Characteristics of ground pressure and mechanism of coal burst in the gob side roadway at Xinjie deep mining area[J]. Journal of China Coal Society, 2020, 45(5): 1595–1606.

- [16] 刘国磊, 王泽东, 崔嵛, 等. 深部煤巷围岩三向应力差异梯度致 冲机理[J]. 煤炭学报, 2023, 48(5): 2106-2122.
  LIU Guolei, WANG Zedong, CUI Yu, et al. Mechanism of rock burst in deep coal tunnel surroundings due to three-way stress difference gradient[J]. Journal of China Coal Society, 2023, 48(5): 2106-2122.
- [17] 于斌,高瑞,孟祥斌,等.大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报,2018,37(5):1134-1145.
  YU Bin, GAO Rui, MENG Xiangbin, et al. Near-far strata structure instability and associate strata behaviors in large space and corresponding control technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1134-1145.
- [18] 于斌, 邰阳, 匡铁军, 等. 大空间采场远近场坚硬顶板井上下控 制理论及技术体系[J]. 煤炭学报, 2023, 48(5): 1875–1893. YU Bin, TAI Yang, KUANG Tiejun, et al. Theory and technical system of control of far-near field hard roofs from ground and underground in a large space stope[J]. Journal of China Coal Society, 2023, 48(5): 1875–1893.
- [19] 潘俊锋,马文涛,刘少虹,等.坚硬顶板水射流预制缝槽定向预 裂防冲技术试验[J]. 岩石力学与工程学报,2021,40(8):1591-1602.

PAN Junfeng, MA Wentao, LIU Shaohong, et al. A prevention technology of rock burst based on directional presplitting of water jet prefabricated slot in hard roof[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1591–1602.

- [20] 窦林名, 阚吉亮, 李许伟, 等. 断顶爆破防治冲击矿压技术体系 及效果评价研究[J]. 煤炭科学技术, 2020, 48(1): 24-32.
  DOU Linming, KAN Jiliang, LI Xuwei, et al. Study on prevention technology of rock burst by break-tip blasting and its effect estimation[J]. Coal Science and Technology, 2020, 48(1): 24-32.
- [21] 何满潮,高玉兵,杨军,等. 厚煤层快速回采切顶卸压无煤柱自成巷工程试验[J]. 岩土力学, 2018, 39(1): 254-264.
  HE Manchao, GAO Yubing, YANG Jun, et al. Engineering experimentation of gob-side entry retaining formed by roof cutting and pressure release in a thick-seam fast-extracted mining face[J].
  Rock and Soil Mechanics, 2018, 39(1): 254-264.
- [22] 高明仕, 贺永亮, 徐东, 等. 冲击地压巷道减隔震技术原理及应用[J]. 煤炭科学技术, 2021, 49(6): 53-60.
  GAO Mingshi, HE Yongliang, XU Dong, et al. Principle and application of reduce and isolation technology in rock burst roadway[J]. Coal Science and Technology, 2021, 49(6): 53-60.
- [23] 高明仕, 窦林名, 张农, 等. 冲击矿压巷道围岩控制的强弱强力 学模型及其应用分析[J]. 岩土力学, 2008, 29(2): 359-364.
  GAO Mingshi, DOU Linming, ZHANG Nong, et al. Strong-softstrong mechanical model for controlling roadway surrounding rock subjected to rock burst and its application[J]. Rock and Soil Mechanics, 2008, 29(2): 359-364.
- [24] 翁明月,郝英豪,解嘉豪.坚硬煤岩体"钻-切-压"一体化释能 减冲技术研究[J].煤炭科学技术,2019,47(8):84-88.

WENG Mingyue, HAO Yinghao, XIE Jiahao. Study on "drillingcutting-fracturing" integrated energy dissipation technology for hard coal rock mass[J]. Coal Science and Technology, 2019, 47(8): 84–88.

- [25] 潘一山,齐庆新,王爱文,等. 煤矿冲击地压巷道三级支护理论 与技术[J]. 煤炭学报, 2020, 45(5): 1585-1594.
  PAN Yishan, QI Qingxin, WANG Aiwen, et al. Theory and technology of three levels support in bump-prone roadway[J]. Journal of China Coal Society, 2020, 45(5): 1585-1594.
- [26] 王爱文,潘一山,齐庆新,等. 煤矿冲击地压巷道三级吸能支护的强度计算方法[J]. 煤炭学报, 2020, 45(9): 3087-3095.
  WANG Aiwen, PAN Yishan, QI Qingxin, et al. Strength calculation method of three-level energy absorption support in rockburst roadways for coal mines[J]. Journal of China Coal Society, 2020, 45(9): 3087-3095.
- [27] 徐连满, 潘威翰, 潘一山, 等. O 型棚支护抵抗冲击地压等级计 算方法[J]. 煤炭学报, 2020, 45(10): 3408-3417.
  XU Lianman, PAN Weihan, PAN Yishan, et al. Calculation method of rock burst resistance grade of O-shaped shed support[J]. Journal of China Coal Society, 2020, 45(10): 3408-3417.
- [28] 曾接兵. 红庆河煤矿双煤柱开采冲击危险特征及其主动调控[D]. 徐州:中国矿业大学, 2022.
  ZENG Jiebing. Burst hazard characteristics of double-panel-pillar mining and its active control in Hong-Qing-He Coal Mine[D].
  Xuzhou: China University of Mining and Technology, 2022.
- [29] 吕国伟. 红庆河煤矿多层厚弱顶板复合诱冲效应[D]. 徐州: 中国矿业大学, 2020.

LYU Guowei. Induced rockburst effect of the composite of multilayer thick and weak roof in Hongqinghe Coal Mine[D]. Xuzhou: China University of Mining and Technology, 2020.

[30] 杨志良. 神东矿区高应力软岩巷道底臌机理及其控制技术研究[D]. 北京: 中国矿业大学(北京), 2023.

YANG Zhiliang. Research on mechanism and control technology of floor heave for high stress soft roadway in Shendong mining area[D]. Beijing: China University of Mining and Technology (Beijing), 2023.

[31] 刘晨康. 红庆河煤矿动压巷道聚能爆破切顶卸压技术研究[D]. 北京:中国矿业大学(北京), 2019.

LIU Chenkang. Research on energy-driven blasting cutting-top and depressurization technology for Hongqinghe Coal Mine[D]. Beijing: China University of Mining and Technology (Beijing), 2019.

- [32] 龙驭球. 弹性地基梁的计算[M]. 北京: 人民教育出版社, 1981.
- [33] 刘文超, 赵毅鑫. 红庆河矿典型工作面冲击地压灾变机理及防治[J]. 矿业科学学报, 2023, 8(6): 803-816.
  LIU Wenchao, ZHAO Yixin. Mechanism and prevention of typical coal burst disaster at the working face of Hongqinghe coal mine[J]. Journal of Mining Science and Technology, 2023, 8(6): 803-816.
- [34] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].2版.徐州: 中国矿业大学出版社,2010.

(责任编辑 范章群)